Lingtrain Aligner — ML powered library for the accurate texts alignment.

Overview

Lingtrain Aligner

ML powered library for the accurate texts alignment in different languages.

Cover

Purpose

Main purpose of this alignment tool is to build parallel corpora using two or more raw texts in different languages. Texts should contain the same information (i.e., one text should be a translated analog oh the other text). E.g., it can be the Drei Kameraden by Remarque in German and the Three Comrades — it's translation into English.

Process

There are plenty of obstacles during the alignment process:

  • The translator could translate several sentences as one.
  • The translator could translate one sentence as many.
  • There are some service marks in the text
    • Page numbers
    • Chapters and other section headings
    • Author and title information
    • Notes

While service marks can be handled manually (the tool helps to detect them), the translation conflicts should be handled more carefully.

Lingtrain Aligner tool will do almost all alignment work for you. It matches the sentence pairs automatically using the multilingual machine learning models. Then it searches for the alignment conflicts and resolves them. As output you will have the parallel corpora either as two distinct plain text files or as the merged corpora in widely used TMX format.

Supported languages and models

Automated alignment process relies on the sentence embeddings models. Embeddings are multidimensional vectors of a special kind which are used to calculate a distance between the sentences. Supported languages list depend on the selected backend model.

  • distiluse-base-multilingual-cased-v2
    • more reliable and fast
    • moderate weights size — 500MB
    • supports 50+ languages
    • full list of supported languages can be found in this paper
  • LaBSE (Language-agnostic BERT Sentence Embedding)
    • can be used for rare languages
    • pretty heavy weights — 1.8GB
    • supports 100+ languages
    • full list of supported languages can be found here

Profit

  • Parallel corpora by itself can used as the resource for machine translation models or for linguistic researches.
  • My personal goal of this project is to help people building parallel translated books for the foreign language learning.
You might also like...
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Text Classification in Turkish Texts with Bert
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

Code for our paper
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

A pytorch implementation of the ACL2019 paper
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Comments
  • File Already Exists

    File Already Exists

    Делаю docker pull lingtrain/aligner:v4 Загружаю текстовый файл и...

    image

    После вот такого предупреждения ничего не происходит Причём оно вылазит на любой текстовый файл

    opened by puffofsmoke 1
  • Fix XML creation:

    Fix XML creation:

    • prevent parent tag duplication for (langs, author, title)
    • add tags for tmx export
    • use 'direction' for splitting paragraphs
    • do not use bs4 (generates incorrect xml), change to lxml
    opened by BorisNA 0
  • A error when I use “splitter.split_by_sentences_wrapper”,please help check the error

    A error when I use “splitter.split_by_sentences_wrapper”,please help check the error

    when I use “splitted_from = splitter.split_by_sentences_wrapper(text1_prepared, lang_from)” return list,

    But I see that there will be a conflict when insert sqlite ,specific error:

    File "ling_test.py", line 36, in aligner.fill_db(db_path, splitted_from, splitted_to) File "lingtrain_aligner/aligner.py", line 498, in fill_db db.executemany("insert into languages(key, val) values(?,?)", [("from", lang_from), ("to", lang_to)]) sqlite3.InterfaceError: Error binding parameter 1 - probably unsupported type.

    opened by Amen-bang 5
  • Add text splitting into small parts

    Add text splitting into small parts

    The current version ignores the H1-H5 headers that were added by user. But when book was translate text from chapter 1 will be translate as a chapter 1 text into another language. You can use this fact and split a big text to small parts.

    Next idea - try split a big text to small blocks automatically: Select a few sentences from original text(for example 10 sentences) and using loop try to find translate block in the thanslated text.

    You can use the next psedocode:

    left_array = original_sentences[100:110]
    sum=[]
    for i=50;i<150 do:
       right_array_candidate=translated_sentences[i:i+10]
       sum[i]=sum(cosunuse_distance(left_array,right_array_candidate))
    
    rigth_array=get_index_with_max_value(sum)
    
    left_text_split_index=left_array[0]
    rigth_text_split_index=rigth_array[0]
    
    opened by AigizK 0
Releases(0.1.0)
Owner
Sergei Averkiev
Software Engineer. Eager to learn languages and machine learning approaches. Live in Moscow.
Sergei Averkiev
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 31, 2022
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

Hyunwoong Ko 72 Dec 07, 2022
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022