This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

Overview

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

Usage

To replicate our results in Section 4, run:

python3 prompt_tune.py \
    --save-dir ../runs/prompt_tuned_sec4/ \
    --prompt-path ../data/binary_NLI_prompts.csv \
    --experiment-name sec4 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --production \
    --seeds 1

Add --fully-train if you want to train on the entire training set in addition to few-shot settings.

To replicate Section 5, run:

python3 prompt_tune.py \
    --save-dir ../runs/prompt_tuned_sec5/ \
    --prompt-path ../data/binary_NLI_prompts_permuted.csv \
    --experiment-name sec5 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --production \
    --seeds 1

To get a fine-tuning baseline (Figure 1):

python3 fine_tune.py \
    --save-dir ../runs/fine_tune/ \
    --epochs 5 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --fully-train \
    --production \
    --seeds 1

To replicate our exact results, use --seeds 1,2,3,4,5,6,7,8, which yields starting_example_index of 550,231,974,966,1046,2350,1326,928 respectively. This is important for ensuring that all models trained under the same seed always see exactly the same training examples. See paper Section 3 for more details.

If these seeds do not generate the same starting_example_index for you (which you can check in the output CSV files), you will have to manually specify the few-shot subset of training examples. I plan to add an argparse argument for this to make it easy.

All other hyperparameters are the same as the argparse default.

Miscellaneous Notes

You might notice that the code and output files are set up to produce a fine-grained analysis of HANS (McCoy et al., 2019). We actually run all of our main experiments on HANS as well and got similar results, which we plan to write up in a future version of our paper. Meanwhile, if you’re curious, feel free to add --do-diagnosis which will report the results on HANS.

Requirements

Python 3.9.

3.7 should mostly work too. You’d have to just replace the new built-in type hints and dictionary union operators with their older equivalents.

Activate your preferred virtual envrionment and then run pip install -r requirements.txt. If you want to replicate our exact results, use

torch==1.9.0+cu111
transformers==4.9.2
datasets==1.11.0
Owner
Albert Webson
Computer science PhD by day. Philosophy MA by night. Advised by Ellie Pavlick at Brown University.
Albert Webson
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022