Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Related tags

Deep Learninglorien
Overview

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Build Status codecov.io

Lorien is an infrastructure to massively explore/benchmark the best schedules of given deep learning models. Lorien is deep learning compiler (DLC) agnostic, so one can easily implement a Lorien dialect to support a new DLC.

Motivation

Although auto-tuning frameworks for deep learning compilers (e.g., TVM, Halide) are capable of delivering high-performance operators that match or even beat vendor kernel libraries, auto-tuning a deep learning model could take days or even weeks, especially for the model with many workloads like ResNet-152 or Inception V3.

With such a long tuning time, one key question To maintain the best user experience during deep model developments and deployments is How to promptly deliver schedules with reasonably good performance upon user requests? Accordingly, we design and implement Lorien to remove the following obstacles:

  1. Tuning Process Scalability and Stability. Long tuning time affects not only the time-to-market but the stability. To the best of our knowledge, none of existing auto-tuning frameworks is designed for tuning on multiple machines, and none of them consider fault tolerance. The tuning process, hence, has to be manually started over if it was accidentally interrupted. This is crucial especially on edge devices, which are less reliable than cloud instances and may fail frequently due to overheat or other factors.

  2. Tuning Result Management. Although almost all auto-tuning frameworks provide mechanisms to serialize tuning results for future applications, all of them use file-based mechanism and have different formats. As a result, engineers have additional work to orchestrate the data for efficient usage.

  3. Time to Deliver an Efficient Schedule. Even a database is constructed to serve most user requests, it is still possible that certain workloads are missing. However, modern auto-tuning frameworks usually leverage iterative search algorithms with on-device measurements, which usually take hours, to find an efficient schedule for an unseen workload. The unfavorably expensive querying/tuning overhead makes production deployment impractical.

Lorien is a unified and extensible infrastructure for delivering efficient deep learning workloads upon requests. Lorien allows auto-tuning deep learning frameworks to be easily plugged in as dialects, and supports large scale tuning on both cloud and edge platforms. The tuning results are managed in a NoSQL database with a unified data model that fits all auto-tuning frameworks. While the best schedules managed in the database can be used to compile deep learning models to achieve high performance, the tuning logs managed in a file system can also 1) enable more comprehensive performance analysis on different platforms, and 2) help train a performance cost model with an AutoML solution.

Please visit the official documentations for setup guideline and tutorials.

System Requirements

  • Python 3.6+

  • Amazon DynamoDB (local or aws): DynamoDB is used for storing and maintain the tuned schedules. You can choose to either of the following:

    1. Launch a local version using JVM on your machine, and specify endpoint URL (e.g. --db "endpoint_url: http://:8000") when invoking a tuning procses.

    2. Configure AWS credential on your machine to directly use AWS DynamoDB service. In this case, you do not have to specify any argument in tuning configurations.

  • AWS S3 (optional): S3 is used to store the full tuning logs (JSON files generated by AutoTVM). If you specify --commit-log-to bucket_name and configure an AWS credential on your machine, then all complete tuning logs will be uploaded to the S3 bucket for debugging or research prupose. Note that this is an optional requirement, so you can ignore the --commit-log-to argument if you do not want to keep full tuning logs.

  • AWS Batch (AWS ECR): You have to set up AWS batch computation environments, job queues, and job definitions in advance to use Lorien AWS batch worker for tuning. See this blog post for reference. You may also need to build an upload Lorien docker images to AWS ECR as the AWS batch job running container.

Docker Images

You can directly make use of pre-built Lorien docker images on Docker Hub, which includes two typs of images for CPU and CPU+CUDA platforms. The docker images have TVM deployed so you can launch a tuning process in the container after cloning Lorien. The docker image is also used for Lorien CI purpose.

Documentation

https://awslabs.github.io/lorien/

Citing Lorien

If you use Lorien in a scientific publication, please cite the following paper:

Cody Hao Yu, Xingjian Shi, Haichen Shen, Zhi Chen, Mu Li, Yida Wang, "Lorien: Efficient Deep Learning Workloads Delivery", Proceedings of the 12th ACM Symposium on Cloud Computing. 2021.

@inproceedings{yu2021lorien,
  title={Lorien: Efficient Deep Learning Workloads Delivery},
  author={Yu, Cody Hao and Shi, Xingjian and Shen, Haichen and Chen, Zhi and Li, Mu and Wang, Yida},
  booktitle={Proceedings of the Seventh ACM Symposium on Cloud Computing},
  year={2021}
}
Owner
Amazon Web Services - Labs
AWS Labs
Amazon Web Services - Labs
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022