MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

Overview

MultiMix

This repository contains the implementation of MultiMix. Our publications for this project are listed below:

"MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images," by Ayaan Haque, Abdullah-Al-Zubaer Imran, Adam Wang, and Demetri Terzopoulos. In ISBI, 2021.

"Generalized Multi-Task Learning from Substantially Unlabeled Multi-Source Medical Image Data," by Ayaan Haque, Abdullah-Al-Zubaer Imran, Adam Wang, and Demetri Terzopoulos. In MELBA, 2021.

Our proposed model performs joint semi-supervised classification and segmentation by employing a confidence-based augmentation strategy for semi-supervised classification along with a novel saliency bridge module that guides segmentation and provides explainability for the joint tasks.

Abstract

Semi-supervised learning via learning from limited quantities of labeled data has been investigated as an alternative to supervised counterparts. Maximizing knowledge gains from copious unlabeled data benefit semi-supervised learning settings. Moreover, learning multiple tasks within the same model further improves model generalizability. We propose a novel multitask learning model, namely MultiMix, which jointly learns disease classification and anatomical segmentation in a sparingly supervised manner, while preserving explainability through bridge saliency between the two tasks. Our extensive experimentation with varied quantities of labeled data in the training sets justify the effectiveness of our multitasking model for the classification of pneumonia and segmentation of lungs from chest X-ray images. Moreover, both in-domain and cross-domain evaluations across the tasks further showcase the potential of our model to adapt to challenging generalization scenarios.

Model

Figure

For sparingly-supervised classification, we leverage data augmentation and pseudo-labeling. We take an unlabeled image and perform two separate augmentations. A single unlabeled image is first weakly augmented, and from that weakly augmented version of the image, a pseudo-label is assumed based on the prediction from the current state of the model. Secondly, the same unlabeled image is then augmented strongly, and a loss is calculated with the pseudo-label from the weakly augmented image and the strongly augmented image itself. Note that this image-label pair is retained only if the confidence with which the model generates the pseudo-label is above a tuned threshold, which prevents the model from learning from incorrect and poor labels.

For sparingly-supervised segmentation, we generate saliency maps based on the predicted classes using the gradients of the encoder. While the segmentation images do not necessarily represent pneumonia, the classification task, the generated maps highlight the lungs, creating images at the final segmentation resolution. These saliency maps can be used to guide the segmentation during the decoder phase, yielding improved segmentation while learning from limited labeled data. In our algorithm, the generated saliency maps are concatenated with the input images, downsampled, and added to the feature maps input to the first decoder stage. Moreover, to ensure consistency, we compute the KL divergence between segmentation predictions for labeled and unlabeled examples. This penalizes the model from making predictions that are increasingly different than those of the labeled data, which helps the model fit more appropriately for the unlabeled data.

Results

A brief summary of our results are shown below. Our algorithm MultiMix is compared to various baselines. In the table, the best fully-supervised scores are underlined and the best semi-supervised scores are bolded.

Results

Boundaries

Code

The code has been written in Python using the Pytorch framework. Training requries a GPU. We provide a Jupyter Notebook, which can be run in Google Colab, containing the algorithm in a usable version. Open MultiMix.ipynb and run it through. The notebook includes annotations to follow along. Open the sample_data folder and use the classification and segmentation sample images for making predictions. Load multimix_trained_model.pth and make predictions on the provided images. Uncomment the training cell to train the model.

Citation

If you find this repo or the paper useful, please cite:

ISBI Paper

@inproceedings{haque2020multimix,
      author={Haque, Ayaan and Imran, Abdullah-Al-Zubaer and Wang, Adam and Terzopoulos, Demetri},
      booktitle={2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)}, 
      title={Multimix: Sparingly-Supervised, Extreme Multitask Learning from Medical Images}, 
      year={2021},
      volume={},
      number={},
      pages={693-696},
      doi={10.1109/ISBI48211.2021.9434167}
}

MELBA Paper

To be released
Owner
Ayaan Haque
“Major League Hacker 💻” Builder 🧱 Learning about learning
Ayaan Haque
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022