A curated list of awesome Active Learning

Overview

Awesome Active Learning Awesome

🤩 A curated list of awesome Active Learning ! 🤩

Background

(image source: Settles, Burr)

What is Active Learning?

Active learning is a special case of machine learning in which a learning algorithm can interactively query a oracle (or some other information source) to label new data points with the desired outputs.

(image source: Settles, Burr)

There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the oracle for labels. This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number of examples to learn a concept can often be much lower than the number required in normal supervised learning. With this approach, there is a risk that the algorithm is overwhelmed by uninformative examples. Recent developments are dedicated to multi-label active learning, hybrid active learning and active learning in a single-pass (on-line) context, combining concepts from the field of machine learning (e.g. conflict and ignorance) with adaptive, incremental learning policies in the field of online machine learning.

(source: Wikipedia)

Contributing

If you find the awesome paper/code/book/tutorial or have some suggestions, please feel free to pull requests or contact [email protected] to add papers using the following Markdown format:

Year | Paper Name | Conference | [Paper](link) | [Code](link) | Tags | Notes |

Thanks for your valuable contribution to the research community. 😃

Table of Contents

Books

Surveys

Papers

Tags

Sur.: survey | Cri.: critics | Pool.: pool-based sampling | Str.: stream-based sampling | Syn.: membership query synthesize | Meta.: meta learning | SSL.: semi-supervised learning | RL.: reinforcement learning | FS.: few-shot learning | SS.: self-supervised |

Before 2017

Year Title Conf Paper Code Tags Notes
1994 Improving Generalization with Active Learning Machine Learning paper
2007 Discriminative Batch Mode Active Learning NIPS paper
2008 Active Learning with Direct Query Construction KDD paper
2008 An Analysis of Active Learning Strategies for Sequence Labeling Tasks EMNLP paper
2008 Hierarchical Sampling for Active Learning ICML paper
2010 Active Instance Sampling via Matrix Partition NIPS paper
2011 Ask Me Better Questions: Active Learning Queries Based on Rule Induction KDD paper
2011 Active Learning from Crowds ICML paper
2011 Bayesian Active Learning for Classification and Preference Learning CoRR paper
2011 Active Learning Using On-line Algorithms KDD paper
2012 Bayesian Optimal Active Search and Surveying ICML paper
2012 Batch Active Learning via Coordinated Matching ICML paper
2013 Active Learning for Multi-Objective Optimization ICML paper
2013 Active Learning for Probabilistic Hypotheses Usingthe Maximum Gibbs Error Criterion NIPS paper
2014 Active Semi-Supervised Learning Using Sampling Theory for Graph Signals KDD paper
2014 Beyond Disagreement-based Agnostic Active Learning NIPS paper
2016 Cost-Effective Active Learning for Deep Image Classification TCSVT paper
2016 Active Image Segmentation Propagation CVPR paper

2017

Title Conf Paper Code Tags Notes
Active Decision Boundary Annotation with Deep Generative Models ICCV paper
Active One-shot Learning CoRR paper code Str. RL. FS.
A Meta-Learning Approach to One-Step Active-Learning [email protected]/ECML paper Pool. Meta.
Generative Adversarial Active Learning arXiv paper Pool. Syn.
Active Learning from Peers NIPS paper
Learning Active Learning from Data NIPS paper code Pool.
Learning Algorithms for Active Learning ICML paper
Deep Bayesian Active Learning with Image Data ICML paper code Pool.

2018

Title Conf Paper Code Tags Notes
The Power of Ensembles for Active Learning in Image Classification CVPR paper
Adversarial Learning for Semi-Supervised Semantic Segmentation BMVC paper code Pool. SSL.
A Variance Maximization Criterion for Active Learning Pattern Recognition paper
Meta-Learning Transferable Active Learning Policies by Deep Reinforcement Learning ICLR-WS paper Pool. Meta. RL.
Active Learning for Convolutional Neural Networks: A Core-Set Approach ICLR paper
Adversarial Active Learning for Sequence Labeling and Generation IJCAI paper
Meta-Learning for Batch Mode Active Learning ICLR-WS paper

2019

Title Conf Paper Code Tags Notes
ViewAL: Active Learning with Viewpoint Entropy for Semantic Segmentation CVPR paper Pool.
Bayesian Generative Active Deep Learning ICML paper code Pool. Semi.
Variational Adversarial Active Learning ICCV paper code Pool. SSL.
Integrating Bayesian and Discriminative Sparse Kernel Machines for Multi-class Active Learning NeurIPS paper
Active Learning via Membership Query Synthesisfor Semi-supervised Sentence Classification CoNLL paper
Discriminative Active Learning arXiv paper
Semantic Redundancies in Image-Classification Datasets: The 10% You Don’t Need arXiv paper
Bayesian Batch Active Learning as Sparse Subset Approximation NIPS paper
Learning Loss for Active Learning CVPR paper code Pool.
Rapid Performance Gain through Active Model Reuse IJCAI paper
Parting with Illusions about Deep Active Learning arXiv paper Cri.
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning NIPS paper

2020

Title Conf Paper Code Tags Notes
Reinforced active learning for image segmentation ICLR paper code Pool. RL.
[BADGE] Batch Active learning by Diverse Gradient Embeddings ICLR paper code Pool.
Adversarial Sampling for Active Learning WACV paper Pool.
Online Active Learning of Reject Option Classifiers AAAI paper
Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision CVPR paper
Deep Reinforcement Active Learning for Medical Image Classification MICCAI paper Pool. RL.
State-Relabeling Adversarial Active Learning CVPR paper code Pool.
Towards Robust and Reproducible Active Learning Using Neural Networks arXiv paper Cri.
Consistency-Based Semi-supervised Active Learning: Towards Minimizing Labeling Cost ECCV paper Pool. SSL.

2021

Title Conf Paper Code Tags Notes
MedSelect: Selective Labeling for Medical Image Classification Combining Meta-Learning with Deep Reinforcement Learning arXiv paper Pool. Meta. RL.
Can Active Learning Preemptively Mitigate Fairness Issues ICLR-RAI paper code Pool. Thinking fairness issues
Sequential Graph Convolutional Network for Active Learning CVPR paper code Pool.
Task-Aware Variational Adversarial Active Learning CVPR paper code Pool.
Effective Evaluation of Deep Active Learning on Image Classification Tasks arXiv paper Cri.
Semi-Supervised Active Learning for Semi-Supervised Models: Exploit Adversarial Examples With Graph-Based Virtual Labels ICCV paper Pool. SSL.
Contrastive Coding for Active Learning under Class Distribution Mismatch ICCV paper code Pool. Defines a good question
Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering ACL-IJCNLP paper code Pool. Thinking about outliers
LADA: Look-Ahead Data Acquisition via Augmentation for Active Learning NeurIPS paper Pool.
Multi-Anchor Active Domain Adaptation for Semantic Segmentation ICCV paper code Pool.
Active Learning for Lane Detection: A Knowledge Distillation Approach ICCV paper Pool.
Active Contrastive Learning of Audio-Visual Video Representations ICLR paper code Pool.
Multiple instance active learning for object detection CVPR paper code Pool.
SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency NeurIPS paper Robot exploration
Influence Selection for Active Learning ICCV paper code Pool.
Reducing Label Effort: Self-Supervised meets Active Learning arXiv paper Pool. SS. Cri. A meaningful attempt on the combination of SS & AL

Turtorials

Tools

Owner
BAI Fan
Deep Learning, Active Learning, Robotics, Artificial Intelligence.
BAI Fan
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022