BankNote-Net: Open dataset and encoder model for assistive currency recognition

Overview

BankNote-Net: Open Dataset for Assistive Currency Recognition

Millions of people around the world have low or no vision. Assistive software applications have been developed for a variety of day-to-day tasks, including currency recognition. To aid with this task, we present BankNote-Net, an open dataset for assistive currency recognition. The dataset consists of a total of 24,816 embeddings of banknote images captured in a variety of assistive scenarios, spanning 17 currencies and 112 denominations. These compliant embeddings were learned using supervised contrastive learning and a MobileNetV2 architecture, and they can be used to train and test specialized downstream models for any currency, including those not covered by our dataset or for which only a few real images per denomination are available (few-shot learning). We deploy a variation of this model for public use in the last version of the Seeing AI app developed by Microsoft, which has over a 100 thousand monthly active users.

If you make use of this dataset or pre-trained model in your own project, please consider referencing this GitHub repository and citing our paper:

@article{oviedoBankNote-Net2022,
  title   = {BankNote-Net: Open Dataset for Assistive Currency Recognition},
  author  = {Felipe Oviedo, Srinivas Vinnakota, Eugene Seleznev, Hemant Malhotra, Saqib Shaikh & Juan Lavista Ferres},
  journal = {https://arxiv.org/pdf/2204.03738.pdf},
  year    = {2022},
}

Data Structure

The dataset data structure consists of 256-dimensional vector embeddings with additional columns for currency, denomination and face labels, as explained in the data exploration notebook. The dataset is saved as 24,826 x 258 flat table in feather and csv file formats. Figure 1 presents some of these learned embeddings.

Figure 1: t-SNE representations of the BankNote-Net embeddings for a few selected currencies.

Setup and Dataset Usage

  1. Install requirements.

    Please, use the conda environment file env.yaml to install the right dependencies.

    # Create conda environment
    conda create env -f env.yaml
    
    # Activate environment to run examples
    conda activate banknote_net
    
  2. Example 1: Train a shallow classifier directly from the dataset embeddings for a currency available in the dataset. For inference, images should be encoded first using the keras MobileNet V2 pre-trained encoder model.

    Run the following file from root: train_from_embedding.py

    python src/train_from_embedding.py --currency AUD --bsize 128 --epochs 25 --dpath ./data/banknote_net.feather
    
      usage: train_from_embedding.py [-h] --currency
                                  {AUD,BRL,CAD,EUR,GBP,INR,JPY,MXN,PKR,SGD,TRY,USD,NZD,NNR,MYR,IDR,PHP}
                                  [--bsize BSIZE] [--epochs EPOCHS]
                                  [--dpath DPATH]
    
      Train model from embeddings.
    
      optional arguments:
      -h, --help            show this help message and exit
      --currency {AUD,BRL,CAD,EUR,GBP,INR,JPY,MXN,PKR,SGD,TRY,USD,NZD,NNR,MYR,IDR,PHP}, --c {AUD,BRL,CAD,EUR,GBP,INR,JPY,MXN,PKR,SGD,TRY,USD,NZD,NNR,MYR,IDR,PHP}
                              String of currency for which to train shallow
                              classifier
      --bsize BSIZE, --b BSIZE
                              Batch size for shallow classifier
      --epochs EPOCHS, --e EPOCHS
                              Number of epochs for training shallow top classifier
      --dpath DPATH, --d DPATH
                              Path to .feather BankNote Net embeddings
                          
    
  3. Example 2: Train a classifier on top of the BankNote-Net pre-trained encoder model using images in a custom directory. Input images must be of size 224 x 224 pixels and have square aspect ratio. For this example, we use a couple dozen images spanning 8 classes for Swedish Krona, structured as in the example_images/SEK directory, that contains both training and validation images.

    Run the following file from root: train_custom.py

    python src/train_custom.py --bsize 4 --epochs 25 --data_path ./data/example_images/SEK/ --enc_path ./models/banknote_net_encoder.h5
    
    usage: train_custom.py [-h] [--bsize BSIZE] [--epochs EPOCHS]
                      [--data_path DATA_PATH] [--enc_path ENC_PATH]
    
    Train model from custom image folder using pre-trained BankNote-Net encoder.
    
    optional arguments:
    -h, --help            show this help message and exit
    --bsize BSIZE, --b BSIZE
                          Batch size
    --epochs EPOCHS, --e EPOCHS
                          Number of epochs for training shallow top classifier.
    --data_path DATA_PATH, --data DATA_PATH
                          Path to folder with images.
    --enc_path ENC_PATH, --enc ENC_PATH
                          Path to .h5 file of pre-trained encoder model.                       
    
  4. Example 3: Perform inference using the SEK few-shot classifier of Example 2, and the validation images on example_images/SEK/val

    Run the following file from root: predict_custom.py, returns encoded predictions.

      python src/predict_custom.py --bsize 1 --data_path ./data/example_images/SEK/val/ --model_path ./src/trained_models/custom_classifier.h5
    
      usage: predict_custom.py [-h] [--bsize BSIZE] [--data_path DATA_PATH]
                              [--model_path MODEL_PATH]
    
      Perform inference using trained custom classifier.
    
      optional arguments:
      -h, --help            show this help message and exit
      --bsize BSIZE, --b BSIZE
                              Batch size
      --data_path DATA_PATH, --data DATA_PATH
                              Path to custom folder with validation images.
      --model_path MODEL_PATH, --enc MODEL_PATH
                              Path to .h5 file of trained classification model.                           
    

License for Dataset and Model

Copyright (c) Microsoft Corporation. All rights reserved.

The dataset is open for anyone to use under the CDLA-Permissive-2.0 license. The embeddings should not be used to reconstruct high resolution banknote images.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022