flask extension for integration with the awesome pydantic package

Overview

Flask-Pydantic

Actions Status PyPI Language grade: Python License Code style

Flask extension for integration of the awesome pydantic package with Flask.

Installation

python3 -m pip install Flask-Pydantic

Basics

validate decorator validates query and body request parameters and makes them accessible two ways:

  1. Using validate arguments, via flask's request variable
parameter type request attribute name
query query_params
body body_params
  1. Using the decorated function argument parameters type hints

  • Success response status code can be modified via on_success_status parameter of validate decorator.
  • response_many parameter set to True enables serialization of multiple models (route function should therefore return iterable of models).
  • request_body_many parameter set to False analogically enables serialization of multiple models inside of the root level of request body. If the request body doesn't contain an array of objects 400 response is returned,
  • If validation fails, 400 response is returned with failure explanation.

For more details see in-code docstring or example app.

Usage

Example 1: Query parameters only

Simply use validate decorator on route function.

Be aware that @app.route decorator must precede @validate (i. e. @validate must be closer to the function declaration).

from typing import Optional
from flask import Flask, request
from pydantic import BaseModel

from flask_pydantic import validate

app = Flask("flask_pydantic_app")

class QueryModel(BaseModel):
  age: int

class ResponseModel(BaseModel):
  id: int
  age: int
  name: str
  nickname: Optional[str]

# Example 1: query parameters only
@app.route("/", methods=["GET"])
@validate()
def get(query:QueryModel):
  age = query.age
  return ResponseModel(
    age=age,
    id=0, name="abc", nickname="123"
    )
See the full example app here
  • age query parameter is a required int
    • curl --location --request GET 'http://127.0.0.1:5000/'
    • if none is provided the response contains:
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "field required",
              "type": "value_error.missing"
            }
          ]
        }
      }
    • for incompatible type (e. g. string /?age=not_a_number)
    • curl --location --request GET 'http://127.0.0.1:5000/?age=abc'
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "value is not a valid integer",
              "type": "type_error.integer"
            }
          ]
        }
      }
  • likewise for body parameters
  • example call with valid parameters: curl --location --request GET 'http://127.0.0.1:5000/?age=20'

-> {"id": 0, "age": 20, "name": "abc", "nickname": "123"}

Example 2: Request body only

class RequestBodyModel(BaseModel):
  name: str
  nickname: Optional[str]

# Example2: request body only
@app.route("/", methods=["POST"])
@validate()
def post(body:RequestBodyModel): 
  name = body.name
  nickname = body.nickname
  return ResponseModel(
    name=name, nickname=nickname,id=0, age=1000
    )
See the full example app here

Example 3: BOTH query paramaters and request body

# Example 3: both query paramters and request body
@app.route("/both", methods=["POST"])
@validate()
def get_and_post(body:RequestBodyModel,query:QueryModel):
  name = body.name # From request body
  nickname = body.nickname # From request body
  age = query.age # from query parameters
  return ResponseModel(
    age=age, name=name, nickname=nickname,
    id=0
  )
See the full example app here

Modify response status code

The default success status code is 200. It can be modified in two ways

  • in return statement
# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel)
def post():
    return ResponseModel(
            id=id_,
            age=request.query_params.age,
            name=request.body_params.name,
            nickname=request.body_params.nickname,
        ), 201
  • in validate decorator
@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel, on_success_status=201)
def post():
    ...

Status code in case of validation error can be modified using FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE flask configuration variable.

Using the decorated function kwargs

Instead of passing body and query to validate, it is possible to directly defined them by using type hinting in the decorated function.

# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate()
def post(body: BodyModel, query: QueryModel):
    return ResponseModel(
            id=id_,
            age=query.age,
            name=body.name,
            nickname=body.nickname,
        )

This way, the parsed data will be directly available in body and query. Furthermore, your IDE will be able to correctly type them.

Model aliases

Pydantic's alias feature is natively supported for query and body models. To use aliases in response modify response model

def modify_key(text: str) -> str:
    # do whatever you want with model keys
    return text


class MyModel(BaseModel):
    ...
    class Config:
        alias_generator = modify_key
        allow_population_by_field_name = True

and set response_by_alias=True in validate decorator

@app.route(...)
@validate(response_by_alias=True)
def my_route():
    ...
    return MyModel(...)

Example app

For more complete examples see example application.

Configuration

The behaviour can be configured using flask's application config FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE - response status code after validation error (defaults to 400)

Contributing

Feature requests and pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

  • clone repository
    git clone https://github.com/bauerji/flask_pydantic.git
    cd flask_pydantic
  • create virtual environment and activate it
    python3 -m venv venv
    source venv/bin/activate
  • install development requirements
    python3 -m pip install -r requirements/test.pip
  • checkout new branch and make your desired changes (don't forget to update tests)
    git checkout -b <your_branch_name>
  • run tests
    python3 -m pytest
  • if tests fails on Black tests, make sure You have your code compliant with style of Black formatter
  • push your changes and create a pull request to master branch

TODOs:

  • header request parameters
  • cookie request parameters
Fractals plotted on MatPlotLib in Python.

About The Project Learning more about fractals through the process of visualization. Built With Matplotlib Numpy License This project is licensed unde

Akeel Ather Medina 2 Aug 30, 2022
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022
China and India Population and GDP Visualization

China and India Population and GDP Visualization Historical Population Comparison between India and China This graph shows the population data of Indi

Nicolas De Mello 10 Oct 27, 2021
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 1.6k Jan 08, 2023
`charts.css.py` brings `charts.css` to Python. Online documentation and samples is available at the link below.

charts.css.py charts.css.py provides a python API to convert your 2-dimension data lists into html snippet, which will be rendered into charts by CSS,

Ray Luo 3 Sep 23, 2021
Draw interactive NetworkX graphs with Altair

nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib

Zachary Sailer 206 Dec 12, 2022
Visualize your pandas data with one-line code

PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand

陈华杰 2 Apr 13, 2022
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns.

Make Complex Heatmaps Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. H

Zuguang Gu 973 Jan 09, 2023
A python wrapper for creating and viewing effects for Matt Parker's christmas tree.

Christmas Tree Visualizer A python wrapper for creating and viewing effects for Matt Parker's christmas tree. Displays py or csv effect files and allo

4 Nov 22, 2022
🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

Guangyang Li 528 Jan 02, 2023
A shimmer pre-load component for Plotly Dash

dash-loading-shimmer A shimmer pre-load component for Plotly Dash Installation Get it with pip: pip install dash-loading-extras Or maybe you prefer Pi

Lucas Durand 4 Oct 12, 2022
Print matplotlib colors

mplcolors Tired of searching "matplotlib colors" every week/day/hour? This simple script displays them all conveniently right in your terminal emulato

Brandon Barker 32 Dec 13, 2022
Custom ROI in Computer Vision Applications

EasyROI Helper library for drawing ROI in Computer Vision Applications Table of Contents EasyROI Table of Contents About The Project Tech Stack File S

43 Dec 09, 2022
Focus on Algorithm Design, Not on Data Wrangling

The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.

Zensors 37 Nov 25, 2022
A small script written in Python3 that generates a visual representation of the Mandelbrot set.

Mandelbrot Set Generator A small script written in Python3 that generates a visual representation of the Mandelbrot set. Abstract The colors in the ou

1 Dec 28, 2021
Python scripts for plotting audiograms and related data from Interacoustics Equinox audiometer and Otoaccess software.

audiometry Python scripts for plotting audiograms and related data from Interacoustics Equinox 2.0 audiometer and Otoaccess software. Maybe similar sc

Hamilton Lab at UT Austin 2 Jun 15, 2022
A tool for creating SVG timelines from simple JSON input.

A tool for creating SVG timelines from simple JSON input.

Jason Reisman 432 Dec 30, 2022
A data visualization curriculum of interactive notebooks.

A data visualization curriculum of interactive notebooks, using Vega-Lite and Altair. This repository contains a series of Python-based Jupyter notebooks.

UW Interactive Data Lab 1.2k Dec 30, 2022
Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advanced practical bioinformatics and its applications globally.

-Nyokong. Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advance

4 Aug 04, 2022
A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece.

COVID-19-Greece A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece. Data sources Data provided by Johns Hopki

Isabelle Viktoria Maciohsek 23 Jan 03, 2023