Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Overview

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video]

The implementation of the papers

Install

The framework was tested with Python 3.8, PyTorch 1.7.0. and CUDA 11.0. The easiest way to work with the code is to create a new virtual Python environment and install the required packages.

  1. Install the virtualenvwrapper.
  2. Create a new environment and install the required packages.
mkvirtualenv --python=python3.8 tcsr
pip install -r requirements.txt
  1. Install Pytorch3d.
cd ~
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
pip install git+https://github.com/facebookresearch/[email protected]
  1. Get the code and prepare the environment as follows:
git clone [email protected]:bednarikjan/temporally_coherent_surface_reconstruction.git
git submodule update --init --recursive
export PYTHONPATH="{PYTHONPATH}:path/to/dir/temporally_coherent_surface_reconstruction"

Get the Data

The project was tested on 6 base datasets (and their derivatives). Each datasets has to be processed so as to generate the input point clouds for training, the GT correspondences for evauluation and other auxilliary data. To do so, please use the individual scripts in tcsr/process_datasets. For each dataset, follow these steps:

  1. Download the data (links below).
  2. Open the script <dataset_name>.py and set the input/output paths.
  3. Run the script: python <dataset_name>.py

1. ANIM

  • Download the sequences horse gallop, horse collapse, camel gallop, camel collapse, and elephant gallop.
  • Download the sequence walking cat.

2. AMA

  • Download all 10 sequences, meshes only.

3. DFAUST

4. CAPE

  • Request the access to the raw scans and download it.
  • At the time of writing the paper (September 2021) four subjects (00032, 00096, 00159, 03223) were available and used in the paper.

5. INRIA

  • Request the access to the dataset and download it.
  • At the time of writing the paper (September 2021), four subjects (s1, s2, s3, s6) were available and used in the paper.

6. CMU

Train

The provided code allows for training our proposed method (OUR) but also the other atlas based approaches Differential Surface Representation (DSR) and AtlasNet (AN). The training is configured using the *.yaml configuration scripts in tcsr/train/configs.

There are 9 sample configuration files our_<dataset_name>.yaml which train OUR on each individual dataset and 2 sample configuration files an_anim.yaml, dsr_anim.yaml which train AN and DSR respectivelly on ANIM dataset.

By default, the trainin uses the exact settings as in the paper, namely it trains for 200'000 iterations using SGD, learning rate of 0.001 and batch size of 4. This can be altered in the configuration files.

Before starting the training, follow these steps:

  • Open the source file tcsr/data/data_loader.py and set the paths to the datasets in each dataset class.
  • Open the desired training configuration *.yaml file in tcsr/train/configs/ and set the output path for the training run data in the attribute path_train_run.

Start the training usint the script tcsr/train/train.py:

python train.py --conf configs/<file_name>.yaml

By default the script saves the training progress each 2000 iterations so you can safely kill it at any point and resume the trianing later using:

python train.py --cont path/to/training_run/root_dir

Evaluate

To evaluate a trianed model on the dense correspondence prediction task, use the script tcsr/evaluate/eval_dataset.py which allows for evaluation of multiple sequences (i.e. individual training runs within one dataset) at once. Please have a look at the command line arguments in the file.

An example of how to run the evaluation for the training runs contained in the root directory train_runs_root corresponding to 2 training runs run for the sequences cat_walk and horse_gallop within ANIM dataset:

python eval_dataset.py /path/to/train_runs_root --ds anim --include_seqs cat_walk horse_gallop  

The script produces a *.csv file in train_runs_root with the 4 measured metrics (see the paper).

Visualize

There are currently two ways to visualize the predictions.

1. Tensorboard

By default, the training script saves the GT and the predicted point clouds (for a couple of random data samples) each 2000 iterations. These can be viewed within Tensorboard. Each patch is visualized with a different color. This visualization is mostly useful as a sanity check during the trianing to see that the model is converging as expected.

  • Navigate to the root directory of the trianing runs and run:
tensorboard --logdir=. --port=8008 --bind_all
  • Open your browser and navigate to http://localhost:8008/

2. Per-sequence reconstruction GIF

You can view the reconstructed surfaces as a patch-wise textured mesh as a video within a GIF file. For this purpose, use the IPython Notebook file tcsr/visualize/render_uv.ipynb and open it in jupyterlab which allows for viewing the GIF right after running the code.

The rendering parameters (such as the camera location, texturing mode, gif speed etc.) are set usin the configuration file tcsr/visualize/conf_patches.yaml. There are sample configurations for the sequence cat_walk, which can be used to write configurations for other sequences/datasets.

Before running the cells, set the variables in the second cell (paths, models, data).

Citation

@inproceedings{bednarik2021temporally_coherent,
   title = {Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases},
   author = {Bednarik, Jan and Kim, Vladimir G. and Chaudhuri, Siddhartha and Parashar, Shaifali and Salzmann, Mathieu and Fua, Pascal and Aigerman, Noam},
   booktitle = {Proceedings of IEEE International Conference on Computer Vision (ICCV)},
   year = {2021}
}

@inproceedings{bednarik2021temporally_consistent,
   title = {Temporally-Consistent Surface Reconstruction via Metrically-Consistent Atlases},
   author = {Bednarik, Jan and Aigerman, Noam and Kim, Vladimir G. and Chaudhuri, Siddhartha and Parashar, Shaifali and Salzmann, Mathieu and Fua, Pascal},
   booktitle = {arXiv},
   year = {2021}
}

Acknowledgements

This work was partially done while the main author was an intern at Adobe Research.

TODO

  • Add support for visualizing the correspondence error heatmap on the GT mesh.
  • Add support for visualizing the colorcoded correspondences on the GT mesh.
  • Add the support for generating the pre-aligned AMAa dataset using ICP.
  • Add the code for the nonrigid ICP experiments.
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023