A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

Overview

SEAL

PWC codebeat badge repo sizebenedekrozemberczki⠀⠀

A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019)

Abstract

Node classification and graph classification are two graph learning problems that predict the class label of a node and the class label of a graph respectively. A node of a graph usually represents a real-world entity, e.g., a user in a social network, or a protein in a protein-protein interaction network. In this work, we consider a more challenging but practically useful setting, in which a node itself is a graph instance. This leads to a hierarchical graph perspective which arises in many domains such as social network, biological network and document collection. For example, in a social network, a group of people with shared interests forms a user group, whereas a number of user groups are interconnected via interactions or common members. We study the node classification problem in the hierarchical graph where a `node' is a graph instance, e.g., a user group in the above example. As labels are usually limited in real-world data, we design two novel semi-supervised solutions named Semi-supervised graph classification via Cautious/Active Iteration (or SEAL-C/AI in short). SEAL-C/AI adopt an iterative framework that takes turns to build or update two classifiers, one working at the graph instance level and the other at the hierarchical graph level. To simplify the representation of the hierarchical graph, we propose a novel supervised, self-attentive graph embedding method called SAGE, which embeds graph instances of arbitrary size into fixed-length vectors. Through experiments on synthetic data and Tencent QQ group data, we demonstrate that SEAL-C/AI not only outperform competing methods by a significant margin in terms of accuracy/Macro-F1, but also generate meaningful interpretations of the learned representations.

This repository provides a PyTorch implementation of SEAL-CI as described in the paper:

Semi-Supervised Graph Classification: A Hierarchical Graph Perspective. Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, Junzhou Huang. WWW, 2019. [Paper]

A TensorFlow implementatio of the model is available [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0

Datasets

Graphs

The code takes graphs for training from an input folder where each graph is stored as a JSON. Graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

The graphs file has to be unzipped in the input folder.

Every JSON file has the following key-value structure:

{"edges": [[0, 1],[1, 2],[2, 3],[3, 4]],
 "features": {"0": ["A","B"], "1": ["B","K"], "2": ["C","F","A"], "3": ["A","B"], "4": ["B"]},
 "label": "A"}

The edges key has an edge list value which descibes the connectivity structure. The features key has features for each node which are stored as a dictionary -- within this nested dictionary features are list values, node identifiers are keys. The label key has a value which is the class membership.

Hierarchical graph

The hierarchical graph is stored as an edge list, where graph identifiers integers are the node identifiers. Finally, node pairs are separated by commas in the comma separated values file. This edge list file has a header.

Options

Training a SEAL-CI model is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --graphs                STR    Training graphs folder.      Default is `input/graphs/`.
  --hierarchical-graph    STR    Macro level graph.           Default is `input/synthetic_edges.csv`.

Model options

  --epochs                      INT     Number of epochs.                  Default is 10.
  --budget                      INT     Nodes to be added.                 Default is 20.
  --labeled-count               INT     Number of labeled instances.       Default is 100.
  --first-gcn-dimensions        INT     Graph level GCN 1st filters.       Default is 16.
  --second-gcn-dimensions       INT     Graph level GCN 2nd filters.       Default is 8.
  --first-dense-neurons         INT     SAGE aggregator neurons.           Default is 16.
  --second-dense-neurons        INT     SAGE attention neurons.            Default is 4.
  --macro-gcn-dimensions        INT     Macro level GCN neurons.           Default is 16.
  --weight-decay                FLOAT   Weight decay of Adam.              Defatul is 5*10^-5.
  --gamma                       FLOAT   Regularization parameter.          Default is 10^-5.
  --learning-rate               FLOAT   Adam learning rate.                Default is 0.01.

Examples

The following commands learn a model and score on the unlabaled instances. Training a model on the default dataset:

python src/main.py

Training each SEAL-CI model for a 100 epochs.

python src/main.py --epochs 100

Changing the budget size.

python src/main.py --budget 200

You might also like...
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

An implementation of
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Comments
  • question about python-cluster and python-scatter

    question about python-cluster and python-scatter

    Hello, I failed to build python-cluster 1.2.4 and python-scatter 1.1.2 with pytorch 0.4.1

    It seems that python-scatter 1.0.4 can fit pytorch 0.4.1 However, I cant find proper verision for python-cluster

    Thank you!

    opened by gyc913 1
  • 关于  RuntimeError: index 145 is out of bounds for dimension 0 with size 1 的报错

    关于 RuntimeError: index 145 is out of bounds for dimension 0 with size 1 的报错

    您好,我在运行您的代码的时候报错 RuntimeError: index 145 is out of bounds for dimension 0 with size 1, 提示错误可能出现在node_features_1 = torch.nn.functional.relu(self.graph_convolution_1(features, edges))这一句处,涉及scatter.py。查了很久的资料,都没有解决。请问您知道是什么问题导致的吗?

    opened by heyjiege 0
  • The details about json file

    The details about json file

    Hi, I have an question about the json file. In the graph folder, every json file is a dictionary include label,feature and edge, the feature is displayed by the index of the node, while the key is "cc_XX" and the "deg_4", so what does the "cc_XX" stand for? When I build my own dataset, how can I obtain the "cc_XX".

    opened by ChenTao2017110 0
Releases(v_001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022