A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

Overview

SimGNN

PWC codebeat badge repo sizebenedekrozemberczki⠀⠀

A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019).

Abstract

Graph similarity search is among the most important graph-based applications, e.g. finding the chemical compounds that are most similar to a query compound. Graph similarity/distance computation, such as Graph Edit Distance (GED) and Maximum Common Subgraph (MCS), is the core operation of graph similarity search and many other applications, but very costly to compute in practice. Inspired by the recent success of neural network approaches to several graph applications, such as node or graph classification, we propose a novel neural network based approach to address this classic yet challenging graph problem, aiming to alleviate the computational burden while preserving a good performance. The proposed approach, called SimGNN, combines two strategies. First, we design a learnable embedding function that maps every graph into an embedding vector, which provides a global summary of a graph. A novel attention mechanism is proposed to emphasize the important nodes with respect to a specific similarity metric. Second, we design a pairwise node comparison method to sup plement the graph-level embeddings with fine-grained node-level information. Our model achieves better generalization on unseen graphs, and in the worst case runs in quadratic time with respect to the number of nodes in two graphs. Taking GED computation as an example, experimental results on three real graph datasets demonstrate the effectiveness and efficiency of our approach. Specifically, our model achieves smaller error rate and great time reduction compared against a series of baselines, including several approximation algorithms on GED computation, and many existing graph neural network based models. Our study suggests SimGNN provides a new direction for future research on graph similarity computation and graph similarity search.

This repository provides a PyTorch implementation of SimGNN as described in the paper:

SimGNN: A Neural Network Approach to Fast Graph Similarity Computation. Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, Wei Wang. WSDM, 2019. [Paper]

A reference Tensorflow implementation is accessible [here] and another implementation is [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0
scikit-learn      0.20.0

Datasets

The code takes pairs of graphs for training from an input folder where each pair of graph is stored as a JSON. Pairs of graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

Every JSON file has the following key-value structure:

{"graph_1": [[0, 1], [1, 2], [2, 3], [3, 4]],
 "graph_2":  [[0, 1], [1, 2], [1, 3], [3, 4], [2, 4]],
 "labels_1": [2, 2, 2, 2],
 "labels_2": [2, 3, 2, 2, 2],
 "ged": 1}

The **graph_1** and **graph_2** keys have edge list values which descibe the connectivity structure. Similarly, the **labels_1** and **labels_2** keys have labels for each node which are stored as list - positions in the list correspond to node identifiers. The **ged** key has an integer value which is the raw graph edit distance for the pair of graphs.

Options

Training a SimGNN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --training-graphs   STR    Training graphs folder.      Default is `dataset/train/`.
  --testing-graphs    STR    Testing graphs folder.       Default is `dataset/test/`.

Model options

  --filters-1             INT         Number of filter in 1st GCN layer.       Default is 128.
  --filters-2             INT         Number of filter in 2nd GCN layer.       Default is 64. 
  --filters-3             INT         Number of filter in 3rd GCN layer.       Default is 32.
  --tensor-neurons        INT         Neurons in tensor network layer.         Default is 16.
  --bottle-neck-neurons   INT         Bottle neck layer neurons.               Default is 16.
  --bins                  INT         Number of histogram bins.                Default is 16.
  --batch-size            INT         Number of pairs processed per batch.     Default is 128. 
  --epochs                INT         Number of SimGNN training epochs.        Default is 5.
  --dropout               FLOAT       Dropout rate.                            Default is 0.5.
  --learning-rate         FLOAT       Learning rate.                           Default is 0.001.
  --weight-decay          FLOAT       Weight decay.                            Default is 10^-5.
  --histogram             BOOL        Include histogram features.              Default is False.

Examples

The following commands learn a neural network and score on the test set. Training a SimGNN model on the default dataset.

python src/main.py

Training a SimGNN model for a 100 epochs with a batch size of 512.

python src/main.py --epochs 100 --batch-size 512

Training a SimGNN with histogram features.

python src/main.py --histogram

Training a SimGNN with histogram features and a large bin number.

python src/main.py --histogram --bins 32

Increasing the learning rate and the dropout.

python src/main.py --learning-rate 0.01 --dropout 0.9

You can save the trained model by adding the --save-path parameter.

python src/main.py --save-path /path/to/model-name

Then you can load a pretrained model using the --load-path parameter; note that the model will be used as-is, no training will be performed.

python src/main.py --load-path /path/to/model-name

License

Comments
  • Model test error is too high

    Model test error is too high

    I'm sorry to bother you.But when I tried to replicate your work,I ran into some difficulties. Here is the problem I met:

    python src/main.py +---------------------+------------------+ | Batch size | 128 | +=====================+==================+ | Bins | 16 | +---------------------+------------------+ | Bottle neck neurons | 16 | +---------------------+------------------+ | Dropout | 0.500 | +---------------------+------------------+ | Epochs | 5 | +---------------------+------------------+ | Filters 1 | 128 | +---------------------+------------------+ | Filters 2 | 64 | +---------------------+------------------+ | Filters 3 | 32 | +---------------------+------------------+ | Histogram | 0 | +---------------------+------------------+ | Learning rate | 0.001 | +---------------------+------------------+ | Tensor neurons | 16 | +---------------------+------------------+ | Testing graphs | ./dataset/test/ | +---------------------+------------------+ | Training graphs | ./dataset/train/ | +---------------------+------------------+ | Weight decay | 0.001 | +---------------------+------------------+

    Enumerating unique labels.

    100%|██████████████████████████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 2533.57it/s]

    Model training.

    Epoch: 0%| | 0/5 [00:00<?, ?it/s] /home/jovyan/SimGNN/src/simgnn.py:212: UserWarning: Using a target size (torch.Size([1, 1])) that is different to the input size (torch.Size([1])). This will likely lead to incorrect results due to broadcasting. Please ensure they havethe same size. losses = losses + torch.nn.functional.mse_loss(data["target"], prediction) Epoch (Loss=3.87038): 100%|██████████████████████████████████████████████████████████████████| 5/5 [00:16<00:00, 3.23s/it] Batches: 100%|███████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.68s/it]

    Model evaluation.

    100%|█████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:00<00:00, 102.39it/s]

    Baseline error: 0.41597.

    Model test error: 0.94024.

    I found the model test error too high! The only thing I changed was the version of the libraries,which I replaced with the latest. Could you help me with this problem?

    opened by Alice314 7
  • About dataset

    About dataset

    I am really interested in this amazing work, but I don't understand how datasets are generated (or processed), or are training data and test data generated from public data sets (just like Linux, AIDS, mentioned in the paper)? I desire to know how syngen.py works and the output of this function.

    Thanks a lot.

    opened by BenedictWongBJUT 6
  • Extracting Latent Space

    Extracting Latent Space

    How would you recommend we approach creating network embeddings (entire network is single point/vector) using this library?

    I was thinking of modifying the forward pass to output similarity and running MDS on the similarity matrix if I'm doing all vs all on the test set.

    I am hoping to compare a couple hundred generated graphs via ERGM and latent ERGM as well as other network approaches to the original graph and output an embedding of all of the graphs.

    Please let me know your recommendations before this becomes a time sink, else, I can find a way to hack it. Thanks!

    opened by jlevy44 4
  • Questions about the model.

    Questions about the model.

    Sorry for using this section to ask technical question rather than code-wise. Had a few questions.

    • Do you have the pretrained model on any of the dataset (like IMDB) the paper talks about? The size of sample in the github dataset is small.
    • Am I right that there is no early stopping in the model? As there is no validation set. [the reason I am asking this question is as I use a bigger dataset, with higher number of epochs, most of the ged predicted values are around 1]
    opened by BehroozMansouri 3
  • Error adapting code

    Error adapting code

    Hey! I am facing some issues adapting your SimGNN code into my graph dataset. I keep encountering an error that says:

    RuntimeError: Invalid index in scatterAdd at ../aten/src/TH/generic/THTensorEvenMoreMath.cpp:520

    I even tried to change one of the training JSON files to the example of the labels and graph structure you gave. I also see a warning about size.

    Am I missing something? Any help would be greatly appreciated.

    opened by kalkidann 3
  • Notice on package versions

    Notice on package versions

    Hello,

    Trying (with some struggle unfortunately) to get this to run, I noticed that the requirements' package versions in the README file are different to some package versions in the requirements.txt.

    You may want to check that out.

    Best.

    opened by Chuhtra 2
  • Performance of SimGNN

    Performance of SimGNN

    Hi @benedekrozemberczki

    We recently used this implementation of SimGNN and noticed that the performance does not match to the one that is outlined in the paper. In particular, for AIDS dataset we get an order of magnitude higher MSE that in the original paper. Did you verify that this implementation match the performance of the paper?

    P.S. we also benchmarked the orignal repo of SimGNN and noticed that it produces slightly better results, even though it's very long to run until convergence.

    opened by nd7141 2
  • Visualizing Attention

    Visualizing Attention

    Hi, I want to visualize the attention with respect to the input graph (like Figure 5 in the paper). Can you please guide me how to visualize the attention weight with the input graphs?

    opened by sajjadriaj 2
  • Add ability to save and load a trained model

    Add ability to save and load a trained model

    To achieve repeatable results, it was also necessary to keep the label in fixed order, so that the resulting one-hot encoding vectors are the same across different runs.

    Explanation of this feature has been added to the README.

    opened by Carlovan 1
  • Batch processing required.

    Batch processing required.

    Hi.

    Is there a version of the code where we can send batched data into the model? Current version works on one graph pair at a time. This is taking too long for larger training data with each data point being fed one at a time into the model via for loop.

    Thanks.

    opened by Indradyumna 1
  • Import error for scatter_cuda

    Import error for scatter_cuda

    Hi there,

    I am having a “no module named touchy_scatter .scatter_cuda” import error. I am sure I have the necessary toolkits and driver installed.

    Does the code require a GPU environment?

    opened by jonathan-goh 1
  • Error in the example from readme

    Error in the example from readme

    In the example in the repo: {"graph_1": [[0, 1], [1, 2], [2, 3], [3, 4]], "graph_2": [[0, 1], [1, 2], [1, 3], [3, 4], [2, 4]], "labels_1": [2, 2, 2, 2], "labels_2": [2, 3, 2, 2, 2], "ged": 1} I think there is a label missing in labels_1. Also the ged for the example is 2 if we consider the missing label is 2. Am I missing smth?

    opened by merascu 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
Xintao 1.4k Dec 25, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023