Toolkit for collecting and applying templates of prompting instances

Overview

PromptSource

Toolkit for collecting and applying templates of prompting instances.

WIP

Setup

  1. Download the repo
  2. Navigate to root directory of the repo
  3. Install requirements with pip install -r requirements.txt

Running

From the root directory of the repo, you can launch the editor with

streamlit run promptsource/promptsource.py

Writing Templates

A prompt template is expressed in Jinja.

It is rendered using an example from the corresponding Hugging Face datasets library (a dictionary). The separator ||| should appear once to divide the template into prompt and output. Generally, the prompt should provide information on the desired behavior, e.g., text passage and instructions, and the output should be a desired response.

Here's an example for AG News:

{{text}}
Is this a piece of news regarding world politics, sports, business, or technology? |||
{{ ["World politics", "Sport", "Business", "Technology"][label] }}

Contributing

This is very much a work in progress, and help is needed and appreciated. Anyone wishing to contribute code can contact Steve Bach for commit access, or submit PRs from forks. Some particular places you could start:

  1. Try to express things! Explore a dataset and tell us what's hard to do to create templates you want
  2. Look in the literature. Are there prompt creation methods that do/do not fit well right now?
  3. Scalability testing. Streamlit is lightweight, and we're reading and writing all prompts on refresh.

See also the design doc.

Before submitting a PR or pushing a new commit, please run style formattings and quality checks so that your newly added file look nice:

make style
make quality

Known Issues

Warning or Error about Darwin on OS X: Try downgrading PyArrow to 3.0.0.

Comments
  • Bias/fairness quantitative measurements

    Bias/fairness quantitative measurements

    Two goals:

    • have quantitative measurements for the paper's Broader impact section
    • reflect these in the model cards when we release checkpoints

    4 held out evaluation sets identified by the Evaluation WG:

    • jigsaw_toxicity_pred
    • crows_pairs
    • winogender (AXG in SuperGLUE)
    • winobias

    At the current state, I see crows_pairs and winobias prompted, jigsaw_toxicity_pred has an opened PR (#451) we need to check, winogender needs to be prompted.

    Workflow:

    • [x] prompt those that were not prompted yet
    • [x] making sure these were actually cached (@VictorSanh can have this caching step done fairly quickly)
    • [x] evaluation (normal and score rank evaluation) or maybe they have some special evaluation?
    • [x] when we know which checkpoints exactly to eval, get the final numbers to report
    opened by VictorSanh 22
  • remove language restrictions in tydiqa + add arabic prompts

    remove language restrictions in tydiqa + add arabic prompts

    • [x] Remove the if statement to allow English prompts to work across the Dataset.
    • [x] Add Arabic prompts for primary task subset with if statement to include only Arabic set.
    • [x] Add Arabic prompts for secondary task subset.
    opened by KhalidAlt 21
  • Tracking trainings and evals

    Tracking trainings and evals

    Main runs

    • D4 only (finetune-t5-xxl-lm-d4-091621-512)
      • [x] Training
      • [x] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'200 (half fine-tuning) (cf #456)
          • [x] Normal
          • [x] Rank
        • [x] 1'124'700 (second to last checkpoint)
          • [x] Normal
          • [x] Rank
      • [ ] SuperGLUE test (1380485) - RUNNING
      • [x] BigBench - see #469
    • D4 + GPT (finetune-t5-xxl-lm-d4-gpt-091621/)
      • [x] Training
      • [x] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'200 (half fine-tuning)
          • [x] Normal
          • [x] Rank
      • [x] BigBench - see #469 - RUNNING
    • D4 + GPT + Sglue (finetune-t5-xxl-lm-d4-all-091621)
      • [X] Training
      • [X] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'000 (half fine-tuning)
          • [x] Normal
          • [x] Rank
      • [x] BigBench - see #469 - RUNNING

    Ablations

    • Nb Template - 1 OG Template (finetune-t5-xxl-lm-d4-og-091621)
      • [X] Training
      • [X] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'000 (half fine-tuning)
          • [x] Normal
          • [x] Rank
    • all OG Templates (finetune-t5-xxl-lm-d4-og-all-091621) #465
      • [x] Training - RUNNING
      • [ ] Eval
        • [ ] Last
          • [ ] Normal
          • [ ] Rank
        • [x] 1'112'000 (half fine-tuning)
          • [ ] Normal ``
          • [x] Rank ``
    • Size XL (finetune-t5-xl-lm-d4-091621)
      • [X] Training
      • [X] Eval
        • [x] Last
          • [x] Normal
          • [x] Rank
        • [x] 1'112'000 (half fine-tuning)
          • [x] Normal
          • [x] Rank
    • D4 only duplicate (finetune-t5-xxl-lm-d4-091621/)
      • [x] Training
      • [ ] Eval
        • [ ] Last
          • [ ] Normal
          • [ ] Rank
        • [X] 1'112'000 (half fine-tuning)
          • [X] Normal
          • [X] Rank

    Baseline

    • T5 zero-shot baseline
      • [x] Eval - RUNNING under finetune-t5-xxl-lm-d4-091621
        • [x] Normal 1384362 - RUNNING
        • [x] Rank 1384360 - RUNNING
    opened by VictorSanh 18
  • Special eval metrics and scripts

    Special eval metrics and scripts

    Since we have the string outputs of all tasks, in principal we should be able to run arbitrary metrics, especially for datasets require fancy [email protected] has imported the official eval scripts for ReCoRD, SQuAD v2, Natural Questions, TriviaQA, and DROP.

    Update: Even when using Lintang's eval scripts, all extractive QAs and closed-book (generative) QAs still have abnormally low numbers, namely:

    • [ ] ReCoRD
    • [x] SQuAD2 (contains unanswerables)
    • [x] DROP
    • [ ] CoQA (contains unanswerables, multiple questions per example)
    • [ ] Quac (contains unanswerables, multiple questions per example)
    • [ ] Natural Questions
    • [x] TriviaQA
    • [x] WebQuestions

    Also, I think all eval of extractive QA from the training mixture also failed.

    (Note that ARC is closed-book, but its performance is fine because it's multiple-choice. A great point in case that machine task categories care more about format way more than human skill/knowledge.)

    Others with issues to keep an eye on:

    • [x] HellaSwag
    • [x] Lambada
    • [x] Winogrande
    evaluations 
    opened by awebson 14
  • Fix rendering: use simple `st.text` instead of `st.markdown`

    Fix rendering: use simple `st.text` instead of `st.markdown`

    The rendering is messed up in a bunch of places. A few issues that are symptomatic: #355 #326

    Replace st.markdown by st.text and extensively test that the rendering is better.

    opened by VictorSanh 13
  • Templates for `ncbi_disease`

    Templates for `ncbi_disease`

    This one compared to the others has been a real pain, but I think the templates are quite interesting. Not sure the Jinja style is top notch, but it seems functional on the example sets I checked.

    opened by drugilsberg 12
  • Creating unique identifier in the template.yaml

    Creating unique identifier in the template.yaml

    For now, it looks like we can sort of uniquely identify each template using a combination of template name and dataset name, but I'm expecting potential collisions when a lot of people start contributing. Besides, naming each template might not be useful (like if we end up with names like template1 template2 etc...), and it would help contributors if they don't have to add a name/check conflicts on the naming part before merging their template.yaml.

    I was thinking that we could add an ID to each entry by getting the hash of timestamp + dataset + string of prompt python function or jinja template? That should be more than enough to prevent collisions

    enhancement 
    opened by arnaudstiegler 12
  • Add prompts for DiaBLa dataset

    Add prompts for DiaBLa dataset

    Added a range of prompts for different tasks:

    • sentence-level translation
    • analogy-based translation
    • contextual translation (with context in different languages, automatically vs. manually translated)
    • detection of errors in translations
    • identification of machine translated output compared to human-produced translations
    opened by rbawden 11
  • AttributeError: 'NoneType' object has no attribute 'session_id'

    AttributeError: 'NoneType' object has no attribute 'session_id'

    Hi,

    Is anyone facing this issue while running streamlit run promptsource/app.py ?

    Traceback (most recent call last):
      File "<string>", line 1, in <module>
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\multiprocessing\spawn.py", line 105, in spawn_main
        exitcode = _main(fd)
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\multiprocessing\spawn.py", line 114, in _main
        prepare(preparation_data)
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\multiprocessing\spawn.py", line 225, in prepare
        _fixup_main_from_path(data['init_main_from_path'])
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\multiprocessing\spawn.py", line 277, in _fixup_main_from_path
        run_name="__mp_main__")
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\runpy.py", line 263, in run_path
        pkg_name=pkg_name, script_name=fname)
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\runpy.py", line 96, in _run_module_code
        mod_name, mod_spec, pkg_name, script_name)
      File "C:\Users\I355109\Anaconda3\envs\python37\lib\runpy.py", line 85, in _run_code
        exec(code, run_globals)
      File "C:\Users\I355109\promptsource\promptsource\app.py", line 59, in <module>
        state = _get_state()
      File "c:\users\i355109\promptsource\promptsource\session.py", line 84, in _get_state
        session = _get_session()
      File "c:\users\i355109\promptsource\promptsource\session.py", line 74, in _get_session
        session_id = get_report_ctx().session_id
    AttributeError: 'NoneType' object has no attribute 'session_id'
    
    opened by manandey 11
  • Add conll2003 ner,pos,chunk task.

    Add conll2003 ner,pos,chunk task.

    Prompt Description:

    1. flat_question_with_label : Regular task. Label are normalized label in-case of POS tagging.
    2. flat_question_with_random_label : It is not expected that user will always provide labels strictly from the dataset. They may provide a subset of labels. So here we provided subset of labels. If the gold labels in the sample are not available in the subset we replace the gold label with "O". In case of choosing random tags, We always include "O" tag for ner, pos and chunk labels.
    3. flat_question_without_label : Regular task. No label is provided.

    POS label Normalization

    Both NER and Chunk task contains "O" tags. But POS doesn't contain "O" tag.

    In case of parts-of-speech tags, there are few labels that are weird in natural sense. For example see a prompt with all pos labels,

    Generate parts of speech from the following sentence. The parts of speech tags are ", '', #, $, (, ), ,, ., :, ``, CC, CD, DT, EX, FW, IN, JJ, JJR, JJS, LS, MD, NN, NNP, NNPS, NNS, NN|SYM, PDT, POS, PRP, PRP$, RB, RBR, RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB
    

    Here first 9 labels are normalized to "O" tag.

    Earlier Pull

    Earlier zip was not available so I wrote the a brute force code in O(n^2) complexity. But now that zip is available, I wrote the code with simpler notation and loop (with O(n) complexity). While merging I messed up in previous pull https://github.com/bigscience-workshop/promptsource/pull/170 . So I closed that and created the new pull.

    opened by sbmaruf 11
  • Some tweaks to the Editor

    Some tweaks to the Editor

    • Default sort by popularity and include number of prompts

    image

    • Global progress table

    image

    • Separated out new prompts and select, and the columns (I think this is okay, but might break)

    image

    • Added text wrapping so that you can view long prompts

    • Added a template viewer section

    image

    opened by srush 11
  • Merging xP3 & eval-hackathon

    Merging xP3 & eval-hackathon

    I would like to get all xP3 prompts merged into eval-hackathon & then have eval-hackathon be merged into main once & for all, but I'm not sure if you want that? cc @VictorSanh @stephenbach

    It would include adding:

    • Normal english prompts for various new & existing datasets (many PRs already open - will clean them up & request reviews when ready if someone gives me rights to do so / merge if i can & tests pass)
    • Long prompts https://github.com/bigscience-workshop/promptsource/pull/823/files ; Would request reviews once ready
    • Human-translated & Machine-translated prompts (Always suffixed with ht or mt, roughly 20K lines; see https://github.com/Muennighoff/promptsource/pull/47/files)

    Lmk if you're okay with that & I'll get started ๐Ÿ™‚

    opened by Muennighoff 0
  • Regenerate all templates in unicode

    Regenerate all templates in unicode

    @KhalidAlt made a great suggestion to change

    yaml.dump(self.format_for_dump(), open(self.yaml_path, "w"))
    

    to

    yaml.dump(self.format_for_dump(), open(self.yaml_path, "w"), allow_unicode=True)
    

    in templates.py so that the yaml files display as unicode (rather than the unicode code points). We should definitely do this, but we should do it when the corpus is relatively stable and we can regenerate (read and write) all the yaml as one commit.

    opened by stephenbach 0
  • fix fields names for TREC after

    fix fields names for TREC after

    changes were induced here https://huggingface.co/datasets/trec/commit/1f97567bdd2adedefe8abdaa9bd6ee0e6725b458 to the field names (coarse_label and fine_label)

    opened by VictorSanh 0
Releases(v0.2.3)
Owner
BigScience Workshop
Research workshop on large language models - The Summer of Language Models 21
BigScience Workshop
Implicit hierarchical a posteriori error estimates in FEniCSx

FEniCSx Error Estimation (FEniCSx-EE) Description FEniCSx-EE is an open source library showing how various error estimation strategies can be implemen

Jack S. Hale 1 Dec 08, 2021
A Python package for floating-point binary fractions. Do math in base 2!

An implementation of a floating-point binary fractions class and module in Python. Work with binary fractions and binary floats with ease!

10 Oct 29, 2022
A monitor than send discord webhook when a specific monitored product has stock in your nearby pickup stores.

Welcome to Apple In-store Monitor This is a monitor that are not fully scaled, and might still have some bugs.

5 Jun 16, 2022
This program organizes automatically files in folders named as file's extension

Auto Sorting System by Sergiy Grimoldi - V.0.0.2 This program organizes automatically files in folders named as file's extension How to use the code T

Sergiy Grimoldi 1 Jan 07, 2022
Python @deprecat decorator to deprecate old python classes, functions or methods.

deprecat Decorator Python @deprecat decorator to deprecate old python classes, functions or methods. Installation pip install deprecat Usage To use th

12 Dec 12, 2022
Install, run, and update apps without root and only in your home directory

Qube Apps Install, run, and update apps in the private storage of a Qube Building instrutions

Micah Lee 26 Dec 27, 2022
Python code to remove empty folders from Windows/Android.

Empty Folder Cleaner is a program that deletes empty folders from your computer or device and removes clutter to improve performance. It supports only windows and android for now.

Dark Coder Cat | Vansh 4 Sep 27, 2022
This python program will display all SSID usernames and SSID passwords you once connected to your laptop

Windows-Wifi-password-extractor This python program will display all SSID usernames and SSID passwords you once connected to your laptop How to run th

Bhaskar Pal 3 Apr 26, 2022
Python Yeelight YLKG07YL/YLKG08YL dimmer handler

With this class you can receive, decrypt and handle Yeelight YLKG07YL/YLKG08YL dimmer bluetooth notifications in your python code.

12 Dec 26, 2022
Check username

Checker-Oukee Check username It checks the available usernames and creates a new account for them Doesn't need proxies Create a file with usernames an

4 Jun 05, 2022
Homebase Name Changer for Fortnite: Save the World.

Homebase Name Changer This program allows you to change the Homebase name in Fortnite: Save the World. How to use it? After starting the HomebaseNameC

PRO100KatYT 7 May 21, 2022
Python tool to check a web applications compliance with OWASP HTTP response headers best practices

Check Your Head A quick and easy way to check a web applications response headers!

Zak 6 Nov 09, 2021
EthTx - Ethereum transactions decoder

EthTx - Ethereum transactions decoder Installation pip install ethtx Requirements The package needs a few external resources, defined in EthTxConfig o

398 Dec 25, 2022
Python script to get some stats on nodes in a Blender material nodetree

Python script to get some stats on nodes in a Blender material nodetree. It counts the nodes, the node types and the max deep level for group nodes.

Alek Mugnozzo 2 Sep 03, 2022
Here, I find the Fibonacci Series using python

Fibonacci-Series-using-python Here, I find the Fibonacci Series using python Requirements No Special Requirements Contribution I have strong belief on

Sachin Vinayak Dabhade 4 Sep 24, 2021
This is Cool Utility tools that you can use in python.

This is Cool Utility tools that you can use in python. There are a few tools that you might find very useful, you can use this on pretty much any project and some utils might help you a lot and save

Senarc Studios 6 Apr 18, 2022
๐Ÿฆฉ A Python tool to create comment-free Jupyter notebooks.

Pelikan Pelikan lets you convert notebooks to comment-free notebooks. In other words, It removes Python block and inline comments from source cells in

Hakan ร–zler 7 Nov 20, 2021
Python based tool to extract forensic info from EventTranscript.db (Windows Diagnostic Data)

EventTranscriptParser EventTranscriptParser is python based tool to extract forensically useful details from EventTranscript.db (Windows Diagnostic Da

P. Abhiram Kumar 24 Nov 18, 2022
Backup a folder to an another folder by using mirror update method.

Mirror Update Backup Backup a folder to an another folder by using mirror update method. How to use Install requirement pip install -r requirements.tx

1 Nov 21, 2022
Package that allows for validate and sanitize of string values.

py.validator A library of string validators and sanitizers Insipired by validator.js Strings only This library validates and sanitizes strings only. P

Sanel Hadzini 22 Nov 08, 2022