Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

Overview

PPO-based Autonomous Navigation for Quadcopters

license

This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous navigation in a corridor environment with a quadcopter. There are blocks having circular opening for the drone to go through for each 4 meters. The expectation is that the agent navigates through these openings without colliding with blocks. This project currently runs only on Windows since Unreal environments were packaged for Windows.

🛠️ Libraries & Tools

Overview

The training environment has 9 sections with different textures and hole positions. The agent starts at these sections randomly. The starting point of the agent is also random within a specific region in the yz-plane.

Observation Space

  • State is in the form of a RGB image taken by the front camera of the agent.
  • Image shape: 50 x 50 x 3

Action Space

  • There are 9 discrete actions.

Environment setup to run the codes

#️⃣ 1. Clone the repository

git clone https://github.com/bilalkabas/PPO-based-Autonomous-Navigation-for-Quadcopters

#️⃣ 2. From Anaconda command prompt, create a new conda environment

I recommend you to use Anaconda or Miniconda to create a virtual environment.

conda create -n ppo_drone python==3.8

#️⃣ 3. Install required libraries

Inside the main directory of the repo

conda activate ppo_drone
pip install -r requirements.txt

#️⃣ 4. (Optional) Install Pytorch for GPU

You must have a CUDA supported NVIDIA GPU.

Details for installation

For this project, I used CUDA 11.0 and the following conda installation command to install Pytorch:

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

#️⃣ 4. Edit settings.json

Content of the settings.json should be as below:

The setting.json file is located at Documents\AirSim folder.

{
    "SettingsVersion": 1.2,
    "LocalHostIp": "127.0.0.1",
    "SimMode": "Multirotor",
    "ClockSpeed": 20,
    "ViewMode": "SpringArmChase",
    "Vehicles": {
        "drone0": {
            "VehicleType": "SimpleFlight",
            "X": 0.0,
            "Y": 0.0,
            "Z": 0.0,
            "Yaw": 0.0
        }
    },
    "CameraDefaults": {
        "CaptureSettings": [
            {
                "ImageType": 0,
                "Width": 50,
                "Height": 50,
                "FOV_Degrees": 120
            }
        ]
    }
  }

How to run the training?

Make sure you followed the instructions above to setup the environment.

#️⃣ 1. Download the training environment

Go to the releases and download TrainEnv.zip. After downloading completed, extract it.

#️⃣ 2. Now, you can open up environment's executable file and start the training

So, inside the repository

python main.py

How to run the pretrained model?

Make sure you followed the instructions above to setup the environment. To speed up the training, the simulation runs at 20x speed. You may consider to change the "ClockSpeed" parameter in settings.json to 1.

#️⃣ 1. Download the test environment

Go to the releases and download TestEnv.zip. After downloading completed, extract it.

#️⃣ 2. Now, you can open up environment's executable file and run the trained model

So, inside the repository

python policy_run.py

Training results

The trained model in saved_policy folder was trained for 280k steps.

Picture2

Test results

The test environment has different textures and hole positions than that of the training environment. For 100 episodes, the trained model is able to travel 17.5 m on average and passes through 4 holes on average without any collision. The agent can pass through at most 9 holes in test environment without any collision.

Author

License

This project is licensed under the GNU Affero General Public License.

You might also like...
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. A clean and robust Pytorch implementation of PPO on continuous action space.
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

Comments
  • A warning I met during I perform

    A warning I met during I perform "python policy_run.py"

    I have followed each step as suggested by the readme. However, I encounter the problem as follow:

    WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED Traceback (most recent call last): File "policy_run.py", line 14, in env = DummyVecEnv([lambda: Monitor( File "E:\Anaconda\envs\PPO_drone\lib\site-packages\stable_baselines3\common\vec_env\dummy_vec_env.py", line 25, in init self.envs = [fn() for fn in env_fns] File "E:\Anaconda\envs\PPO_drone\lib\site-packages\stable_baselines3\common\vec_env\dummy_vec_env.py", line 25, in self.envs = [fn() for fn in env_fns] File "policy_run.py", line 15, in gym.make( File "E:\Anaconda\envs\PPO_drone\lib\site-packages\gym\envs\registration.py", line 235, in make return registry.make(id, **kwargs) File "E:\Anaconda\envs\PPO_drone\lib\site-packages\gym\envs\registration.py", line 129, in make env = spec.make(kwargs) File "E:\Anaconda\envs\PPO_drone\lib\site-packages\gym\envs\registration.py", line 90, in make env = cls(_kwargs) File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 169, in init super(TestEnv, self).init(ip_address, image_shape, env_config) File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 19, in init self.setup_flight() File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 174, in setup_flight super(TestEnv, self).setup_flight() File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 36, in setup_flight self.drone.reset() File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim\client.py", line 26, in reset self.client.call('reset') File "E:\Anaconda\envs\PPO_drone\lib\site-packages\msgpackrpc\session.py", line 41, in call return self.send_request(method, args).get() File "E:\Anaconda\envs\PPO_drone\lib\site-packages\msgpackrpc\future.py", line 43, in get raise self._error msgpackrpc.error.TransportError: Retry connection over the limit

    I would be grateful if anyone could tell me how to fix this.

    opened by XiAoSSuper 1
Releases(v1.0.0-windows)
Owner
Bilal Kabas
BSc., Electrical & Electronics Engineering, Undergraduate Researcher: Robotics, Computer Vision, ML & DL
Bilal Kabas
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022