BlueFog Tutorials

Overview

BlueFog Tutorials

License

Welcome to the BlueFog tutorials!

In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks serve two purposes:

  • Help readers understand the basic concepts and theories of the decentralized optimization.
  • Help readers understand how to implement decentralized algorithms with the BlueFog library.

Contents

1 Preliminary

Learn how to write your first "hello world" program over the real multi-CPU system with BlueFog.

2 Average Consensus Algorithm

Learn how to achieve the globally averaged consensus among nodes in a decentralized manner.

3 Decentralized Gradient Descent

Learn how to solve a general distributed (possibly stochastic) optimization problem in a decentralized manner.

4 Decentralized Gradient Descent with Bias-Correction

Learn how to accelerate your decentralized (possibly stochastic) optimization algorithms with various bias-correction techniques.

5 Decentralized Optimization over directed and time-varying networks

Learn how to solve distributed optimization in a decentralized manner if the connected topology is directed or time-varying.

6 Asynchronous Decentralized Optimization

Learn how to solve a general distributed optimization problem with asynchronous decentralized algorithms.

7 Decentralized Deep Learning

Learn how to train a deep neural network with decentralized optimization algorithms.

Call for Contributions

This tutorial only contains the very basic concepts, algorithms, theories, and implementations for decentralized optimization. It misses many important recent progress in the algorithm development and theory in the decentralized optimization community. We hope you will consider using BlueFog in the experiment of your new decentralized algorithm and summarize your ideas into a Jupyter notebook tutorial.

About BlueFog Team

The BlueFog Team involves several researchers and engineers that target to make decentralized algorithms practical for large-scale optimization and deep learning. We hope to bridge the gap between the theoretical progress of decentralized algorithms in the academia and the real implementation in the industry. We hope more researchers and engineers can join us to contribute to the community of decentralized optimization.

Other Resources:

Faster Learning over Networks and BlueFog, BlueFog Team, invited talk at MLA, 2020 [slides]

Parallel, Distributed, and Decentralized optimization methods, Wotao Yin, Tutorial in ECOM2021, 2021 [Materials]

Citation

Feel free to share the BlueFog repo and this tutorial to anyone that has an interest. If you use BlueFog, please cite it as follows:

@software{bluefog2021_4616052,
  author       = {BlueFog Team},
  title        = {BlueFog: Make Decentralized Algorithms Practical For Optimization and Deep Learning},
  month        = Mar.,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.4616052},
  url          = {https://doi.org/10.5281/zenodo.4616052}
}
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022