BookNLP, a natural language processing pipeline for books

Overview

BookNLP

BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including:

  • Part-of-speech tagging
  • Dependency parsing
  • Entity recognition
  • Character name clustering (e.g., "Tom", "Tom Sawyer", "Mr. Sawyer", "Thomas Sawyer" -> TOM_SAWYER) and coreference resolution
  • Quotation speaker identification
  • Supersense tagging (e.g., "animal", "artifact", "body", "cognition", etc.)
  • Event tagging
  • Referential gender inference (TOM_SAWYER -> he/him/his)

BookNLP ships with two models, both with identical architectures but different underlying BERT sizes. The larger and more accurate big model is fit for GPUs and multi-core computers; the faster small model is more appropriate for personal computers. See the table below for a comparison of the difference, both in terms of overall speed and in accuracy for the tasks that BookNLP performs.

Small Big
Entity tagging (F1) 88.2 90.0
Supersense tagging (F1) 73.2 76.2
Event tagging (F1) 70.6 74.1
Coreference resolution (Avg. F1) 76.4 79.0
Speaker attribution (B3) 86.4 89.9
CPU time, 2019 MacBook Pro (mins.)* 3.6 15.4
CPU time, 10-core server (mins.)* 2.4 5.2
GPU time, Titan RTX (mins.)* 2.1 2.2

*timings measure speed to run BookNLP on a sample book of The Secret Garden (99K tokens). To explore running BookNLP in Google Colab on a GPU, see this notebook.

Installation

conda create --name booknlp python=3.7
conda activate booknlp
  • If using a GPU, install pytorch for your system and CUDA version by following installation instructions on https://pytorch.org.

  • Install booknlp and download Spacy model.

pip install booknlp
python -m spacy download en_core_web_sm

Usage

from booknlp.booknlp import BookNLP

model_params={
		"pipeline":"entity,quote,supersense,event,coref", 
		"model":"big"
	}
	
booknlp=BookNLP("en", model_params)

# Input file to process
input_file="input_dir/bartleby_the_scrivener.txt"

# Output directory to store resulting files in
output_directory="output_dir/bartleby/"

# File within this directory will be named ${book_id}.entities, ${book_id}.tokens, etc.
book_id="bartleby"

booknlp.process(input_file, output_directory, book_id)

This runs the full BookNLP pipeline; you are able to run only some elements of the pipeline (to cut down on computational time) by specifying them in that parameter (e.g., to only run entity tagging and event tagging, change model_params above to include "pipeline":"entity,event").

This process creates the directory output_dir/bartleby and generates the following files:

  • bartleby/bartleby.tokens -- This encodes core word-level information. Each row corresponds to one token and includes the following information:

    • paragraph ID
    • sentence ID
    • token ID within sentence
    • token ID within document
    • word
    • lemma
    • byte onset within original document
    • byte offset within original document
    • POS tag
    • dependency relation
    • token ID within document of syntactic head
    • event
  • bartleby/bartleby.entities -- This represents the typed entities within the document (e.g., people and places), along with their coreference.

    • coreference ID (unique entity ID)
    • start token ID within document
    • end token ID within document
    • NOM (nominal), PROP (proper), or PRON (pronoun)
    • PER (person), LOC (location), FAC (facility), GPE (geo-political entity), VEH (vehicle), ORG (organization)
    • text of entity
  • bartleby/bartleby.supersense -- This stores information from supersense tagging.

    • start token ID within document
    • end token ID within document
    • supersense category (verb.cognition, verb.communication, noun.artifact, etc.)
  • bartleby/bartleby.quotes -- This stores information about the quotations in the document, along with the speaker. In a sentence like "'Yes', she said", where she -> ELIZABETH_BENNETT, "she" is the attributed mention of the quotation 'Yes', and is coreferent with the unique entity ELIZABETH_BENNETT.

    • start token ID within document of quotation
    • end token ID within document of quotation
    • start token ID within document of attributed mention
    • end token ID within document of attributed mention
    • attributed mention text
    • coreference ID (unique entity ID) of attributed mention
    • quotation text
  • bartleby/bartleby.book

JSON file providing information about all characters mentioned more than 1 time in the book, including their proper/common/pronominal references, referential gender, actions for the which they are the agent and patient, objects they possess, and modifiers.

  • bartleby/bartleby.book.html

HTML file containing a.) the full text of the book along with annotations for entities, coreference, and speaker attribution and b.) a list of the named characters and major entity catgories (FAC, GPE, LOC, etc.).

Annotations

Entity annotations

The entity annotation layer covers six of the ACE 2005 categories in text:

  • People (PER): Tom Sawyer, her daughter
  • Facilities (FAC): the house, the kitchen
  • Geo-political entities (GPE): London, the village
  • Locations (LOC): the forest, the river
  • Vehicles (VEH): the ship, the car
  • Organizations (ORG): the army, the Church

The targets of annotation here include both named entities (e.g., Tom Sawyer), common entities (the boy) and pronouns (he). These entities can be nested, as in the following:

drawing

For more, see: David Bamman, Sejal Popat and Sheng Shen, "An Annotated Dataset of Literary Entities," NAACL 2019.

The entity tagging model within BookNLP is trained on an annotated dataset of 968K tokens, including the public domain materials in LitBank and a new dataset of ~500 contemporary books, including bestsellers, Pulitzer Prize winners, works by Black authors, global Anglophone books, and genre fiction (article forthcoming).

Event annotations

The event layer identifies events with asserted realis (depicted as actually taking place, with specific participants at a specific time) -- as opposed to events with other epistemic modalities (hypotheticals, future events, extradiegetic summaries by the narrator).

Text Events Source
My father’s eyes had closed upon the light of this world six months, when mine opened on it. {closed, opened} Dickens, David Copperfield
Call me Ishmael. {} Melville, Moby Dick
His sister was a tall, strong girl, and she walked rapidly and resolutely, as if she knew exactly where she was going and what she was going to do next. {walked} Cather, O Pioneers

For more, see: Matt Sims, Jong Ho Park and David Bamman, "Literary Event Detection," ACL 2019.

The event tagging model is trained on event annotations within LitBank. The small model above makes use of a distillation process, by training on the predictions made by the big model for a collection of contemporary texts.

Supersense tagging

Supersense tagging provides coarse semantic information for a sentence by tagging spans with 41 lexical semantic categories drawn from WordNet, spanning both nouns (including plant, animal, food, feeling, and artifact) and verbs (including cognition, communication, motion, etc.)

Example Source
The [station wagons]artifact [arrived]motion at [noon]time, a long shining [line]group that [coursed]motion through the [west campus]location. Delillo, White Noise

The BookNLP tagger is trained on SemCor.

.

Character name clustering and coreference

The coreference layer covers the six ACE entity categories outlined above (people, facilities, locations, geo-political entities, organizations and vehicles) and is trained on LitBank and PreCo.

Example Source
One may as well begin with [Helen]x's letters to [[her]x sister]y Forster, Howard's End

Accurate coreference at the scale of a book-length document is still an open research problem, and attempting full coreference -- where any named entity (Elizabeth), common entity (her sister, his daughter) and pronoun (she) can corefer -- tends to erroneously conflate multiple distinct entities into one. By default, BookNLP addresses this by first carrying out character name clustering (grouping "Tom", "Tom Sawyer" and "Mr. Sawyer" into a single entity), and then allowing pronouns to corefer with either named entities (Tom) or common entities (the boy), but disallowing common entities from co-referring to named entities. To turn off this mode and carry out full corefernce, add pronominalCorefOnly=False to the model_params parameters dictionary above (but be sure to inspect the output!).

For more on the coreference criteria used in this work, see David Bamman, Olivia Lewke and Anya Mansoor (2020), "An Annotated Dataset of Coreference in English Literature", LREC.

Referential gender inference

BookNLP infers the referential gender of characters by associating them with the pronouns (he/him/his, she/her, they/them, xe/xem/xyr/xir, etc.) used to refer to them in the context of the story. This method encodes several assumptions:

  • BookNLP describes the referential gender of characters, and not their gender identity. Characters are described by the pronouns used to refer to them (e.g., he/him, she/her) rather than labels like "M/F".

  • Prior information on the alignment of names with referential gender (e.g., from government records or larger background datasets) can be used to provide some information to inform this process if desired (e.g., "Tom" is often associated with he/him in pre-1923 English texts). Name information, however, should not be uniquely determinative, but rather should be sensitive to the context in which it is used (e.g., "Tom" in the book "Tom and Some Other Girls", where Tom is aligned with she/her). By default, BookNLP uses prior information on the alignment of proper names and honorifics with pronouns drawn from ~15K works from Project Gutenberg; this prior information can be ignored by setting referential_gender_hyperparameterFile:None in the model_params file. Alternative priors can be used by passing the pathname to a prior file (in the same format as english/data/gutenberg_prop_gender_terms.txt) to this parameter.

  • Users should be free to define the referential gender categories used here. The default set of categories is {he, him, his}, {she, her}, {they, them, their}, {xe, xem, xyr, xir}, and {ze, zem, zir, hir}. To specify a different set of categories, update the model_params setting to define them: referential_gender_cats: [ ["he", "him", "his"], ["she", "her"], ["they", "them", "their"], ["xe", "xem", "xyr", "xir"], ["ze", "zem", "zir", "hir"] ]

Speaker attribution

The speaker attribution model identifies all instances of direct speech in the text and attributes it to its speaker.

Quote Speaker Source
— Come up , Kinch ! Come up , you fearful jesuit ! Buck_Mulligan-0 Joyce, Ulysses
‘ Oh dear ! Oh dear ! I shall be late ! ’ The_White_Rabbit-4 Carroll, Alice in Wonderland
“ Do n't put your feet up there , Huckleberry ; ” Miss_Watson-26 Twain, Huckleberry Finn

This model is trained on speaker attribution data in LitBank. For more on the quotation annotations, see this paper.

Part-of-speech tagging and dependency parsing

BookNLP uses Spacy for part-of-speech tagging and dependency parsing.

Acknowledgments

BookNLP is supported by the National Endowment for the Humanities (HAA-271654-20) and the National Science Foundation (IIS-1942591).
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Python utility library for compositing PDF documents with reportlab.

pdfdoc-py Python utility library for compositing PDF documents with reportlab. Installation The pdfdoc-py package can be installed directly from the s

Michael Gale 1 Jan 06, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
تولید اسم های رندوم فینگیلیش

karafs کرفس تولید اسم های رندوم فینگیلیش installation ➜ pip install karafs usage دو زبانه ➜ karafs -n 10 توت فرنگی بی ناموس toot farangi-ye bi_namoos

Vaheed NÆINI (9E) 36 Nov 24, 2022
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023