Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Overview

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding

TL;DR

1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 

논문 정리 발표에 들어갈 내용

  • 저자가 풀려고 하는 문제는 어떤 것인가?
  • 어떤 식으로 해결하고자 했는가. 어떤 장점이 있는가(시간 여유가 된다면, 이전에는 어떤 방법이 있었고 그 방법들의 단점)
  • 그 방법에 대한 intuition (수학 없이)
  • 방법에 대한 이해(수학적으로)
  • 방법의 성공성을 보여주기 위해 사용한 데이터, 메트릭, 성능비교
  • 부족하다 생각되는 것, 애매한 것, 혹은 좋았던 점 등의 Discussion point

리딩 리스트

Dates Paper(author) Year Presenter File upload Code explained
Class-Based n-gram Models of Natural Language(Peter F Brown, et al.) 1992 소연 설명
Efficient Estimation of Word Representations in Vector Space(Tomas Mikolov, et al) 2013 동진 발표
Distributed Representations of Words and Phrases and their Compositionality(Tomas Mikolov, et al) 2013 나연 설명 skip-gram, CBOW
Distributed Representations of Sentences and Documents(Quoc V. Le and Tomas Mikolov) 2014 기원 설명 Doc2Vec
GloVe: Global Vectors for Word Representation(Jeffrey Pennington, et al.) 2015 수정 설명
Skip-Thought Vectors(Ryan Kiros, et al.) 2015 기범 설명
Enriching Word Vectors with Subword Information(Piotr Bojanowski, et al.) 2017 은기 설명
Universal Sentence Encoder(Daniel Cer et al.) 2018

issue & 추가 스터디 자료

Dates Topic Presenter File upload
04/14 genism을 이용한 word2vec 사용 현지 링크
04/14 negative samping & subsampling 나경 링크
04/14 hierarchical softmax 소연 링크
04/14 negative contrastive estimation(NCE) 수정 링크

스터디 룰

  • 스터디 시간 : 목요일 저녁 9시 30분!
  • 스터디 분량 : 매주 1주씩! (프로덕트 서빙 커리큘럼 기간에 집중할 수 있게 그전에 끝내보아영)
    • 각각 읽고, 질문 최소 1개를 github issue에 올림(+ 거기에 대한 답변을 안다면 답변 달아주기!)
  • 발표자 : 해당 요일에 랜덤 선택. 발표 자료는 자유 양식
    • 논문 발표 : 발표자는 발표 후 정리 내용 해당 레포 폴더파서 업로드. 발표자 외 사람 중 공유하고 싶은 사람은 issues에 남기거나 file upload 에 마찬가지로 링크 추가 가능(자율)
    • 코드뷰 설명: 해당 논문 발표자는 다음주차에 코드뷰 설명(e.g, 어떤 라이브러리로 쉽게 쓸 수 있는지 usage 설명, 알고리즘이 복잡한 경우 코드뷰로 어떻게 구현되었는지 설명 등 본인 기호에 맞게)

참여자

강나경, 김소연, 김현지, 박기범, 임동진, 임수정, 정기원, 한나연 , 김은기

참고 링크

논문을 정리하는 틀과 issues를 통한 discussion이 좋았던 깃헙 레포 참고

리딩 리스트를 참고한 NLP Must Read paper 정리된 깃헙 레포 참고

국내 NLP 리뷰 모임 참고 (season1의 beginners에 중복되는 논문들 있어요!)

Owner
Soyeon Kim
Soyeon Kim
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022