Official implementation of the ICLR 2021 paper

Overview

You Only Need Adversarial Supervision for Semantic Image Synthesis

Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial Supervision for Semantic Image Synthesis". The code allows the users to reproduce and extend the results reported in the study. Please cite the paper when reporting, reproducing or extending the results.

[OpenReview] [Arxiv]

Overview

This repository implements the OASIS model, which generates realistic looking images from semantic label maps. In addition, many different images can be generated from any given label map by simply resampling a noise vector (first two rows of the figure below). The model also allows to just resample parts of the image (see the last two rows of the figure below). Check out the paper for details, as well as the appendix, which contains many additional examples.

Setup

First, clone this repository:

git clone https://github.com/boschresearch/OASIS.git
cd OASIS

The code is tested for Python 3.7.6 and the packages listed in oasis.yml. The basic requirements are PyTorch and Torchvision. The easiest way to get going is to install the oasis conda environment via

conda env create --file oasis.yml
source activate oasis

Datasets

For COCO-Stuff, Cityscapes or ADE20K, please follow the instructions for the dataset preparation as outlined in https://github.com/NVlabs/SPADE.

Training the model

To train the model, execute the training scripts in the scripts folder. In these scripts you first need to specify the path to the data folder. Via the --name parameter the experiment can be given a unique identifier. The experimental results are then saved in the folder ./checkpoints, where a new folder for each run is created with the specified experiment name. You can also specify another folder for the checkpoints using the --checkpoints_dir parameter. If you want to continue training, start the respective script with the --continue_train flag. Have a look at config.py for other options you can specify.
Training on 4 NVIDIA Tesla V100 (32GB) is recommended.

Testing the model

To test a trained model, execute the testing scripts in the scripts folder. The --name parameter should correspond to the experiment name that you want to test, and the --checkpoints_dir should the folder where the experiment is saved (default: ./checkpoints). These scripts will generate images from a pretrained model in ./results/name/.

Measuring FID

The FID is computed on the fly during training, using the popular PyTorch FID implementation from https://github.com/mseitzer/pytorch-fid. At the beginning of training, the inception moments of the real images are computed before the actual training loop starts. How frequently the FID should be evaluated is controlled via the parameter --freq_fid, which is set to 5000 steps by default. The inception net that is used for FID computation automatically downloads a pre-trained inception net checkpoint. If that automatic download fails, for instance because your server has restricted internet access, get the checkpoint named pt_inception-2015-12-05-6726825d.pth from here and place it in /utils/fid_folder/. In this case, do not forget to replace load_state_dict_from_url function accordingly.

Pretrained models

The checkpoints for the pre-trained models are available here as zip files. Copy them into the checkpoints folder (the default is ./checkpoints, create it if it doesn't yet exist) and unzip them. The folder structure should be

checkpoints_dir
├── oasis_ade20k_pretrained                   
├── oasis_cityscapes_pretrained  
└── oasis_coco_pretrained

You can generate images with a pre-trained checkpoint via test.py. Using the example of ADE20K:

python test.py --dataset_mode ade20k --name oasis_ade20k_pretrained \
--dataroot path_to/ADEChallenge2016

This script will create a folder named ./results in which the resulting images are saved.

If you want to continue training from this checkpoint, use train.py with the same --name parameter and add --continue_train --which_iter best.

Citation

If you use this work please cite

@inproceedings{schonfeld_sushko_iclr2021,
  title={You Only Need Adversarial Supervision for Semantic Image Synthesis},
  author={Sch{\"o}nfeld, Edgar and Sushko, Vadim and Zhang, Dan and Gall, Juergen and Schiele, Bernt and Khoreva, Anna},
  booktitle={International Conference on Learning Representations},
  year={2021}
}   

License

This project is open-sourced under the AGPL-3.0 license. See the LICENSE file for details.

For a list of other open source components included in this project, see the file 3rd-party-licenses.txt.

Purpose of the project

This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way.

Contact

Please feel free to open an issue or contact us personally if you have questions, need help, or need explanations. Write to one of the following email addresses, and maybe put one other in the cc:

[email protected]
[email protected]
[email protected]
[email protected]

Owner
Bosch Research
Bosch Research
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022