Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Related tags

Deep Learningdfgo
Overview

Differentiable Factor Graph Optimization for Learning Smoothers

mypy

Figure describing the overall training pipeline proposed by our IROS paper. Contains five sections, arranged left to right: (1) system models, (2) factor graphs for state estimation, (3) MAP inference, (4) state estimates, and (5) errors with respect to ground-truth. Arrows show how gradients are backpropagated from right to left, starting directly from the final stage (error with respect to ground-truth) back to parameters of the system models.

Overview

Code release for our IROS 2021 conference paper:

Brent Yi1, Michelle A. Lee1, Alina Kloss2, Roberto Martín-Martín1, and Jeannette Bohg1. Differentiable Factor Graph Optimization for Learning Smoothers. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2021.

1Stanford University, {brentyi,michellelee,robertom,bohg}@cs.stanford.edu
2Max Planck Institute for Intelligent Systems, [email protected]


This repository contains models, training scripts, and experimental results, and can be used to either reproduce our results or as a reference for implementation details.

Significant chunks of the code written for this paper have been factored out of this repository and released as standalone libraries, which may be useful for building on our work. You can find each of them linked here:

  • jaxfg is our core factor graph optimization library.
  • jaxlie is our Lie theory library for working with rigid body transformations.
  • jax_dataclasses is our library for building JAX pytrees as dataclasses. It's similar to flax.struct, but has workflow improvements for static analysis and nested structures.
  • jax-ekf contains our EKF implementation.

Status

Included in this repo for the disk task:

  • Smoother training & results
    • Training: python train_disk_fg.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/disk/fg/**/
  • Filter baseline training & results
    • Training: python train_disk_ekf.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/disk/ekf/**/
  • LSTM baseline training & results
    • Training: python train_disk_lstm.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/disk/lstm/**/

And, for the visual odometry task:

  • Smoother training & results (including ablations)
    • Training: python train_kitti_fg.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/kitti/fg/**/
  • EKF baseline training & results
    • Training: python train_kitti_ekf.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/kitti/ekf/**/
  • LSTM baseline training & results
    • Training: python train_kitti_lstm.py --help
    • Evaluation: python cross_validate.py --experiment-paths ./experiments/kitti/lstm/**/

Note that **/ indicates a recursive glob in zsh. This can be emulated in bash>4 via the globstar option (shopt -q globstar).

We've done our best to make our research code easy to parse, but it's still being iterated on! If you have questions, suggestions, or any general comments, please reach out or file an issue.

Setup

We use Python 3.8 and miniconda for development.

  1. Any calls to CHOLMOD (via scikit-sparse, sometimes used for eval but never for training itself) will require SuiteSparse:

    # Mac
    brew install suite-sparse
    
    # Debian
    sudo apt-get install -y libsuitesparse-dev
  2. Dependencies can be installed via pip:

    pip install -r requirements.txt

    In addition to JAX and the first-party dependencies listed above, note that this also includes various other helpers:

    • datargs (currently forked) is super useful for building type-safe argument parsers.
    • torch's Dataset and DataLoader interfaces are used for training.
    • fannypack contains some utilities for downloading datasets, working with PDB, polling repository commit hashes.

The requirements.txt provided will install the CPU version of JAX by default. For CUDA support, please see instructions from the JAX team.

Datasets

Datasets synced from Google Drive and loaded via h5py automatically as needed. If you're interested in downloading them manually, see lib/kitti/data_loading.py and lib/disk/data_loading.py.

Training

The naming convention for training scripts is as follows: train_{task}_{model type}.py.

All of the training scripts provide a command-line interface for configuring experiment details and hyperparameters. The --help flag will summarize these settings and their default values. For example, to run the training script for factor graphs on the disk task, try:

> python train_disk_fg.py --help

Factor graph training script for disk task.

optional arguments:
  -h, --help            show this help message and exit
  --experiment-identifier EXPERIMENT_IDENTIFIER
                        (default: disk/fg/default_experiment/fold_{dataset_fold})
  --random-seed RANDOM_SEED
                        (default: 94305)
  --dataset-fold {0,1,2,3,4,5,6,7,8,9}
                        (default: 0)
  --batch-size BATCH_SIZE
                        (default: 32)
  --train-sequence-length TRAIN_SEQUENCE_LENGTH
                        (default: 20)
  --num-epochs NUM_EPOCHS
                        (default: 30)
  --learning-rate LEARNING_RATE
                        (default: 0.0001)
  --warmup-steps WARMUP_STEPS
                        (default: 50)
  --max-gradient-norm MAX_GRADIENT_NORM
                        (default: 10.0)
  --noise-model {CONSTANT,HETEROSCEDASTIC}
                        (default: CONSTANT)
  --loss {JOINT_NLL,SURROGATE_LOSS}
                        (default: SURROGATE_LOSS)
  --pretrained-virtual-sensor-identifier PRETRAINED_VIRTUAL_SENSOR_IDENTIFIER
                        (default: disk/pretrain_virtual_sensor/fold_{dataset_fold})

When run, train scripts serialize experiment configurations to an experiment_config.yaml file. You can find hyperparameters in the experiments/ directory for all results presented in our paper.

Evaluation

All evaluation metrics are recorded at train time. The cross_validate.py script can be used to compute metrics across folds:

# Summarize all experiments with means and standard errors of recorded metrics.
python cross_validate.py

# Include statistics for every fold -- this is much more data!
python cross_validate.py --disaggregate

# We can also glob for a partial set of experiments; for example, all of the
# disk experiments.
# Note that the ** wildcard may fail in bash; see above for a fix.
python cross_validate.py --experiment-paths ./experiments/disk/**/

Acknowledgements

We'd like to thank Rika Antonova, Kevin Zakka, Nick Heppert, Angelina Wang, and Philipp Wu for discussions and feedback on both our paper and codebase. Our software design also benefits from ideas from several open-source projects, including Sophus, GTSAM, Ceres Solver, minisam, and SwiftFusion.

This work is partially supported by the Toyota Research Institute (TRI) and Google. This article solely reflects the opinions and conclusions of its authors and not TRI, Google, or any entity associated with TRI or Google.

Owner
Brent Yi
Brent Yi
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022