jaxfg - Factor graph-based nonlinear optimization library for JAX.

Overview

jaxfg

Factor graph-based nonlinear optimization library for JAX.

Applications include sensor fusion, control, planning, SLAM. Borrows heavily from a wide set of existing libraries, including: Ceres Solver, g2o, GTSAM, minisam, SwiftFusion.

Features:

  • Autodiff-powered (sparse) Jacobians.
  • Automatic batching of factor computations.
  • Out-of-the-box support for optimization on SO(2), SO(3), SE(2), and SE(3).
  • 100% implemented in Python!

Current limitations:

  • JIT compilation adds significant startup overhead. This could likely be optimized (for example, by specifying more analytical Jacobians) but is mostly unavoidable with JAX/XLA. Limits applications for systems that are online or require dynamic graph alterations.
  • Python >=3.7 only, due to features needed for generic types.

Installation

scikit-sparse require SuiteSparse:

sudo apt update
sudo apt install -y libsuitesparse-dev

Then, from your environment of choice:

git clone https://github.com/brentyi/jaxfg.git
cd jaxfg
pip install -e .

Example scripts

Toy pose graph optimization:

python scripts/pose_graph_simple.py

Pose graph optimization from .g2o files:

python scripts/pose_graph_g2o.py --help

To-do

  • Preliminary graph, variable, factor interfaces
  • Real vector variable types
  • Refactor into package
  • Nonlinear optimization for MAP inference
    • Conjugate gradient linear solver
    • CHOLMOD linear solver
      • Basic implementation. JIT-able, but no vmap, pmap, or autodiff support.
    • Gauss-Newton implementation
    • Termination criteria
    • Damped least squares
    • Dogleg
    • Inexact Newton steps
    • Revisit termination criteria
    • Reduce redundant code
    • Robust losses
  • Marginalization
    • Working prototype using sksparse/CHOLMOD
    • JAX implementation?
  • Validate g2o example
  • Performance
    • More intentional JIT compilation
    • Re-implement parallel factor computation
    • Vectorized linearization
    • Basic (Jacobi) CGLS preconditioning
  • Manifold optimization (mostly offloaded to jaxlie)
    • Basic interface
    • Manifold optimization on SO2
    • Manifold optimization on SE2
    • Manifold optimization on SO3
    • Manifold optimization on SE3
  • Usability + code health (low priority)
    • Basic cleanup/refactor
      • Better parallel factor interface
      • Separate out utils, lie group helpers
      • Put things in folders
    • Resolve typing errors
    • Cleanup/refactor (more)
    • Package cleanup: dependencies, etc
    • Add CI:
      • mypy
      • lint
      • build
      • coverage
    • More comprehensive tests
    • Clean up docstrings
Owner
Brent Yi
Brent Yi
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

Andrea Cavallo 1 Jan 30, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

Ayşe Nur Türkaslan 9 Oct 14, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021