MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Overview

MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Codes for the following paper:

MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images
Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, James Tompkin
ECCV 2020

High-level overview of approach.

See more at our project page.

If you use these codes, please cite:

@inproceedings{Attal:2020:ECCV,
    author    = "Benjamin Attal and Selena Ling and Aaron Gokaslan and Christian Richardt and James Tompkin",
    title     = "{MatryODShka}: Real-time {6DoF} Video View Synthesis using Multi-Sphere Images",
    booktitle = "European Conference on Computer Vision (ECCV)",
    month     = aug,
    year      = "2020",
    url       = "https://visual.cs.brown.edu/matryodshka"
}

Note that our codes are based on the code from the paper "Stereo Maginification: Learning View Synthesis using Multiplane Images" by Zhou et al. [1], and on the code from the paper "Pixel2mesh: Generating 3D Mesh Models from Single RGB Images." by Wang et al. [3]. Please also cite their work.

Setup

  • Create a conda environment from the matryodshka-gpu.yml file.
  • Run ./download_glob.sh to download the files needed for training and testing.
  • Download the dataset as in Section Replica dataset.

Training the model

See train.py for training the model.

  • To train with transform inverse regularization, use --transform_inverse_reg flag.

  • To train with CoordNet, use --coord_net flag.

  • To experiment with different losses (elpips or l2), use --which_loss flag.

    • To train with spherical weighting on loss maps, use --spherical_attention flag.
  • To train with graph convolution network (GCN), use --gcn flag. Note the particular GCN architecture definition we used is from the Pixel2Mesh repo [3].

  • The current scripts support training on Replica 360 and cubemap dataset and RealEstate10K dataset. Use --input_type to switch between these types of inputs (ODS, PP, REALESTATE_PP).

See scripts/train/*.sh for some sample scripts.

Testing the model

See test.py for testing the model with replica-360 test set.

  • When testing on video frames, e.g. test_video_640x320, include on_video in --test_type flag.
  • When testing on high-resolution images, include high_res in --test_type flag.

See scripts/test/*.sh for sample scripts.

Evaluation

See eval.py for evaluating the model, which saves the metric scores into a json file. We evaluate our models on

  • third-view reconstruction quality

    • See scripts/eval/*-reg.sh for a sample script.
  • frame-to-frame reconstruction differences on video sequences to evaluate the effect of transform inverse regularization on temporal consistency.

    • Include on_video when specifying the --eval_type flag.
    • See scripts/eval/*-video.sh for a sample script.

Pre-trained model

Download models pre-trained with and without transform inverse regularization by running ./download_model.sh. These can also be found here at the Brown library for archival purposes.

Replica dataset

We rendered a 360 and a cubemap dataset for training from the Facebook Replica Dataset [2]. This data can be found here at the Brown library for archival purposes. You should have access to the following datasets.

  • train_640x320
  • test_640x320
  • test_video_640x320

You can also find the camera pose information here that were used to render the training dataset. Each line of the txt fileach line of the txt file is formatted as below:

camera_position_x camera_position_y camera_position_z ods_baseline target1_offset_x target1_offset_y target1_offset_z target2_offset_x target2_offset_y target2_offset_z target3_offset_x target3_offset_y target3_offset_z

We also have a fork of the Replica dataset codebase which can regenerate our data from scratch. This contains customized rendering scripts that allow output of ODS, equirectangular, and cubemap projection spherical imagery, along with corresponding depth maps.

Note that the 360 dataset we release for download was rendered with an incorrect 90-degree camera rotation around the up vector and a horizontal flip. Regenerating the dataset from our released code fork with the customized rendering scripts will not include this coordinate change. The output model performance should be approximately the same.

Exporting the model to ONNX

We export our model to ONNX by firstly converting the checkpoint into a pb file, which then gets converted to an onnx file with the tf2onnx module. See export.py for exporting the model into .pb file.

See scripts/export/model-name.sh for a sample script to run export.py, and scripts/export/pb2onnx.sh for a sample script to run pb-to-onnx conversion.

Unity Application + ONNX to TensorRT Conversion

We are still working on releasing the real-time Unity application and onnx2trt conversion scripts. Please bear with us!

References

[1] Zhou, Tinghui, et al. "Stereo magnification: Learning view synthesis using multiplane images." arXiv preprint arXiv:1805.09817 (2018). https://github.com/google/stereo-magnification

[2] Straub, Julian, et al. "The Replica dataset: A digital replica of indoor spaces." arXiv preprint arXiv:1906.05797 (2019). https://github.com/facebookresearch/Replica-Dataset

[3] Wang, Nanyang, et al. "Pixel2mesh: Generating 3d mesh models from single rgb images." Proceedings of the European Conference on Computer Vision (ECCV). 2018. https://github.com/nywang16/Pixel2Mesh

Owner
Brown University Visual Computing Group
Brown University Visual Computing Group
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022