IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

Overview

IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020) Tweet

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to your questions. This repo is almost the same with Another-Version, and you can also refer to that version.

Introduction

Abstract

The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such a problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing scalability and performance. In this paper, we propose an instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. Besides, we propose the region-guided regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. Our method is so concise and efficient that it is easy to be generalized to other unsupervised domain adaptation methods. Experiments on 'GTA5 to Cityscapes' and 'SYNTHIA to Cityscapes' demonstrate the superior performance of our approach compared with the state-of-the-art methods.

IAST Overview

Result

source target device GPU memory mIoU-19 mIoU-16 mIoU-13 model
GTA5 Cityscapes Tesla V100-32GB 18.5 GB 51.88 - - download
GTA5 Cityscapes Tesla T4 6.3 GB 51.20 - - download
SYNTHIA Cityscapes Tesla V100-32GB 18.5 GB - 51.54 57.81 download
SYNTHIA Cityscapes Tesla T4 9.8 GB - 51.24 57.70 download

Setup

1) Envs

  • Pytorch >= 1.0
  • Python >= 3.6
  • cuda >= 9.0

Install python packages

$ pip install -r  requirements.txt

apex : Tools for easy mixed precision and distributed training in Pytorch

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

2) Download Dataset

Please download the datasets from these links:

Dataset directory should have this structure:

${ROOT_DIR}/data/GTA5/
${ROOT_DIR}/data/GTA5/images
${ROOT_DIR}/data/GTA5/labels

${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES
${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES/RGB
${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES/GT

${ROOT_DIR}/data/cityscapes
${ROOT_DIR}/data/cityscapes/leftImg8bit
${ROOT_DIR}/data/cityscapes/gtFine

3) Download Pretrained Models

We provide pre-trained models. We recommend that you download them and put them in pretrained_models/, which will save a lot of time for training and ensure consistent results.

V100 models

T4 models

(Optional) Of course, if you have plenty of time, you can skip this step and start training from scratch. We also provide these scripts.

Training

Our original experiments are all carried out on Tesla-V100, and there will be a large number of GPU memory usage (batch_size=8). For low GPU memory devices, we also trained on Tesla-T4 to ensure that most people can reproduce the results (batch_size=2).

Start self-training (download the pre-trained models first)

cd code

# GTA5 to Cityscapes (V100)
sh ../scripts/self_training_only/run_gtav2cityscapes_self_traing_only_v100.sh
# GTA5 to Cityscapes (T4)
sh ../scripts/self_training_only/run_gtav2cityscapes_self_traing_only_t4.sh
# SYNTHIA to Cityscapes (V100)
sh ../scripts/self_training_only/run_syn2cityscapes_self_traing_only_v100.sh
# SYNTHIA to Cityscapes (T4)
sh ../scripts/self_training_only/run_syn2cityscapes_self_traing_only_t4.sh

(Optional) Training from scratch

cd code

# GTA5 to Cityscapes (V100)
sh ../scripts/from_scratch/run_gtav2cityscapes_self_traing_v100.sh
# GTA5 to Cityscapes (T4)
sh ../scripts/from_scratch/run_gtav2cityscapes_self_traing_t4.sh
# SYNTHIA to Cityscapes (V100)
sh ../scripts/from_scratch/run_syn2cityscapes_self_traing_v100.sh
# SYNTHIA to Cityscapes (T4)
sh ../scripts/from_scratch/run_syn2cityscapes_self_traing_t4.sh

Evaluation

cd code
python eval.py --config_file  --resume_from 

Support multi-scale testing and flip testing.

# Modify the following parameters in the config file

TEST:
  RESIZE_SIZE: [[1024, 512], [1280, 640], [1536, 768], [1800, 900], [2048, 1024]] 
  USE_FLIP: False 

Citation

Please cite this paper in your publications if it helps your research:

@article{mei2020instance,
  title={Instance Adaptive Self-Training for Unsupervised Domain Adaptation},
  author={Mei, Ke and Zhu, Chuang and Zou, Jiaqi and Zhang, Shanghang},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2020}
}

Author

Ke Mei, Chuang Zhu

If you have any questions, you can contact me directly.

Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group - email: <a href=[email protected]">
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022