Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Overview

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Tweet

Project | Arxiv | YouTube | PWC | PWC

dataset1

Abstract

In recent years, deep learning-based methods have shown promising results in computer vision area. However, a common deep learning model requires a large amount of labeled data, which is labor-intensive to collect and label. What’s more, the model can be ruined due to the domain shift between training data and testing data. Text recognition is a broadly studied field in computer vision and suffers from the same problems noted above due to the diversity of fonts and complicated backgrounds. In this paper, we focus on the text recognition problem and mainly make three contributions toward these problems. First, we collect a multi-source domain adaptation dataset for text recognition, including five different domains with over five million images, which is the first multi-domain text recognition dataset to our best knowledge. Secondly, we propose a new method called Meta Self-Learning, which combines the self-learning method with the meta-learning paradigm and achieves a better recognition result under the scene of multi domain adaptation. Thirdly, extensive experiments are conducted on the dataset to provide a benchmark and also show the effectiveness of our method.

Data Prepare

Download the dataset from here.

Before using the raw data, you need to convert it to lmdb dataset.

python create_lmdb_dataset.py --inputPath data/ --gtFile data/gt.txt --outputPath result/

The data folder should be organized below

data
├── train_label.txt
└── imgs
    ├── 000000001.png
    ├── 000000002.png
    ├── 000000003.png
    └── ...

The format of train_label.txt should be {imagepath}\t{label}\n For example,

imgs/000000001.png Tiredness
imgs/000000002.png kills
imgs/000000003.png A

Requirements

  • Python == 3.7
  • Pytorch == 1.7.0
  • torchvision == 0.8.1
  • Linux or OSX
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN may work with minimal modification, but untested)

Argument

  • --train_data: folder path to training lmdb dataset.
  • --valid_data: folder path to validation lmdb dataset.
  • --select_data: select training data, examples are shown below
  • --batch_ratio: assign ratio for each selected data in the batch.
  • --Transformation: select Transformation module [None | TPS], in our method, we use None only.
  • --FeatureExtraction: select FeatureExtraction module [VGG | RCNN | ResNet], in our method, we use ResNet only.
  • --SequenceModeling: select SequenceModeling module [None | BiLSTM], in our method, we use BiLSTM only.
  • --Prediction: select Prediction module [CTC | Attn], in our method, we use Attn only.
  • --saved_model: path to a pretrained model.
  • --valInterval: iteration interval for validation.
  • --inner_loop: update steps in the meta update, default is 1.
  • --source_num: number of source domains, default is 4.

Get started

  • Install PyTorch and 0.4+ and other dependencies (e.g., torchvision, visdom and dominate).

    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.
  • Clone this repo:

git clone https://github.com/bupt-ai-cz/Meta-SelfLearning.git
cd Meta-SelfLearning

To train the baseline model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python train.py \
    --train_data data/train/ \
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --valInterval 5000

To train the meta_train model for synthetic domain using the pretrained model.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_train.py 
    --train_data data/train/ \ 
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn/ \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4  \
    --valInterval 5000 --inner_loop 1\
    --saved_model saved_models/pretrained.pth 

To train the pseudo-label model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python self_training.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4 \
    --warmup_threshold 28 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 \ 
    --saved_model saved_models/pretrained.pth 

To train the meta self-learning model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_self_learning.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --source_num 4 \
    --warmup_threshold 0 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 --inner_loop 1 \
    --saved_model pretrained_model/pretrained.pth 

Citation

If you use this data for your research, please cite our paper Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark

@article{qiu2021meta,
  title={Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark},
  author={Qiu, Shuhao and Zhu, Chuang and Zhou, Wenli},
  journal={arXiv preprint arXiv:2108.10840},
  year={2021}
}

License

This Dataset is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications, or personal experimentation. Permission is granted to use the data given that you agree to our license terms bellow:

  1. That you include a reference to our Dataset in any work that makes use of the dataset. For research papers, cite our preferred publication as listed on our website; for other media cite our preferred publication as listed on our website or link to the our website.
  2. That you may not use the dataset or any derivative work for commercial purposes as, for example, licensing or selling the data, or using the data with a purpose to procure a commercial gain.

Privacy

Part of the data is constructed based on the processing of existing databases. Part of the data is crawled online or captured by ourselves. Part of the data is newly generated. We prohibit you from using the Datasets in any manner to identify or invade the privacy of any person. If you have any privacy concerns, including to remove your information from the Dataset, please contact us.

Contact

Reference

Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group - email: <a href=[email protected]">
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023