iBOT: Image BERT Pre-Training with Online Tokenizer

Related tags

Deep Learningibot
Overview

Image BERT Pre-Training with iBOT iBOT Icon

PWC PWC

Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

[arXiv] [BibTex]

iBOT framework

iBOT is a novel self-supervised pre-training framework that performs masked image modeling with self-distillation. iBOT pre-trained model shows local semantic features, which helps the model transfer well to downstream tasks both at a global scale and a local scale. For example, iBOT achieves strong performance on COCO object detection (51.4 box AP and 44.2 mask AP) and ADE20K semantic segmentation (50.0 mIoU) with vanilla ViT-B/16. iBOT can also extract semantic-meaningful local parts, like dog's ear 🐶 .

Update 🎉

  • December 2021 - Release the code and pre-trained models.
  • November 2021 - Release the pre-print on arXiv.

Installation

See installation structions for details.

Training

For a glimpse at the full documentation of iBOT pre-training, please run:

python main_ibot.py --help

iBOT Pre-Training with ViTs

To start the iBOT pre-training with Vision Transformer (ViT), simply run the following commands. JOB_NAME is a customized argument to distinguish different experiments and this will automatically save checkpoints into the seperate folders.

./run.sh imagenet_pretrain $JOB_NAME vit_{small,base,large} teacher {16,24,64}

The exact arguments to reproduce the models presented in our paper can be found in the args column of the pre-trained models. We also provide the logs for pre-training to help reproducibility.

For example, run iBOT with ViT-S/16 network on two nodes with 8 GPUs for 800 epochs with the following command. The resulting checkpoint should reach 75.2% on k-NN accuracy, 77.9% on linear probing accuracy, and 82.3% on fine-tuning accuracy.

./run.sh imagenet_pretrain $JOB_NAME vit_small teacher 16 \
  --teacher_temp 0.07 \
  --warmup_teacher_temp_epochs 30 \
  --norm_last_layer false \
  --epochs 800 \
  --batch_size_per_gpu 64 \
  --shared_head true \
  --out_dim 8192 \
  --local_crops_number 10 \
  --global_crops_scale 0.25 1 \
  --local_crops_scale 0.05 0.25 \
  --pred_ratio 0 0.3 \
  --pred_ratio_var 0 0.2

iBOT Pre-Training with Swins

This code also works for training iBOT on Swin Transformer (Swin). In the paper, we only conduct experiments on Swin-T with different window size:

./run.sh imagenet_pretrain $JOB_NAME swin_tiny teacher {16,40} \
  --patch_size 4 \
  --window_size {7,14}

For example, run iBOT with Swin-T/14 network on five nodes with 8 GPUS for 300 epochs with the following command. The resulting checkpoint should reach 76.2% on k-NN accuracy, 79.3% on linear probing accuracy.

./run.sh imagenet_pretrain $JOB_NAME swin_tiny teacher 40 \
  --teacher_temp 0.07 \
  --warmup_teacher_temp_epochs 30 \
  --norm_last_layer false \
  --epochs 300 \
  --batch_size_per_gpu 26 \
  --shared_head true \
  --out_dim 8192 \
  --local_crops_number 10 \
  --global_crops_scale 0.25 1 \
  --local_crops_scale 0.05 0.25 \
  --pred_ratio 0 0.3 \
  --pred_ratio_var 0 0.2 \
  --pred_start_epoch 50 \
  --patch_size 4 \
  --window_size 14 

Pre-Trained Models

You can choose to download only the weights of the pretrained backbone used for downstream tasks, and the full ckpt which contains backbone and projection head weights for both student and teacher networks. For the backbone, s denotes that the student network is selected while t denotes that the teacher network is selected.

Arch. Par. k-NN Lin. Fin. download
ViT-S/16 21M 74.5% 77.0% 82.3% backbone (t) full ckpt args logs
Swin-T/7 28M 75.3% 78.6% \ backbone (t) full ckpt args logs
Swin-T/14 28M 76.2% 79.3% \ backbone (t) full ckpt args logs
ViT-B/16 85M 77.1% 79.5% 83.8% backbone (t) full ckpt args logs

We also provide the ViT-{B,L}/16 model pre-trained on ImageNet-22K dataset.

Arch. Par. k-NN Lin. Fin. download
ViT-B/16 85M 71.1% 79.0% 84.4% backbone (s) full ckpt args logs
ViT-L/16 307M 70.6% 81.7% 86.3% backbone (s) full ckpt args logs

To extract the backbone from the full checkpoint by yourself, please run the following command where KEY being either student or teacher.

WEIGHT_FILE=$OUTPUT_DIR/checkpoint_$KEY.pth

python extract_backbone_weights.py \
  --checkpoint_key $KEY \
  $PRETRAINED \
  $WEIGHT_FILE \

Downstream Evaluation

See Evaluating iBOT on Downstream Tasks for details.

Property Analysis

See Analyzing iBOT's Properties for robustness test and visualizing self-attention map:

iBOT Global Pattern Layout

or extracting sparse correspondence pairs bwtween two images:

iBOT Global Pattern Layout

Extracting Semantic Patterns

We extract top-k numbered local classes based on patch tokens with their corresponding patches and contexts by running the following command. We indentify very diverse behaviour like shared low-level textures and high-level semantics.

python3 -m torch.distributed.launch --nproc_per_node=8 \
    --master_port=${MASTER_PORT:-29500} \
    analysis/extract_pattern/extract_topk_cluster.py \
    --pretrained_path $PRETRAINED \
    --checkpoint {student,teacher} \
    --type patch \
    --topk 36 \
    --patch_window 5 \
    --show_pics 20 \
    --arch vit_small \
    --save_path memory_bank_patch.pth \
    --data_path data/imagenet/val
iBOT Local Part-Level Pattern Layout

The script also supports to extract the patern layout on the [CLS] token, which is actually doing clustering or unsupervised classification. This property is not induced by MIM objective since we also spot this feature on DINO.

python3 -m torch.distributed.launch --nproc_per_node=8 \
    --master_port=${MASTER_PORT:-29500} \
    analysis/extract_pattern/extract_topk_cluster.py \
    --pretrained_path $PRETRAINED \
    --checkpoint {student,teacher} \
    --type cls \
    --topk 36 \
    --show_pics 20 \
    --arch vit_small \
    --save_path memory_bank_cls.pth \
    --data_path data/imagenet/val
iBOT Global Pattern Layout

Acknowledgement

This repository is built using the DINO repository and the BEiT repository.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citing iBOT

If you find this repository useful, please consider giving a star and citation:

@article{zhou2021ibot,
  title={iBOT: Image BERT Pre-Training with Online Tokenizer},
  author={Zhou, Jinghao and Wei, Chen and Wang, Huiyu and Shen, Wei and Xie, Cihang and Yuille, Alan and Kong, Tao},
  journal={arXiv preprint arXiv:2111.07832},
  year={2021}
}
Owner
Bytedance Inc.
Bytedance Inc.
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022