Config files for my GitHub profile.

Overview

Canalyst Candas Data Science Library

Name

Canalyst Candas

Description

Built by a former PM / analyst to give anyone with a little bit of Python knowledge the ability to scale their investment process. Access, manipulate, and visualize Canalyst models, without opening Excel. Work with full fundamental models, create and calculate scenarios, and visualize actionable investment ideas.

Hosted collaborative Jupyterhub server available at Candas Cloud

  • Rather than simply deliver data, Candas serves the actual model in a Python class. Like a calculator, this allows for custom scenario evaluation for one or more companies at a time.
  • Use Candas to search for KPIs by partial or full description, filter by “key driver” – model driver, sector, category, or query against values for a screener-like functionality. Search either our full model dataset or our guidance dataset for companies which provide guidance.
  • Discover the KPIs with the greatest impact on stock price, and evaluate those KPIs based on changing P&L scenarios.
  • Visualize P&L statements in node trees with common size % and values attached. Use the built-in charting tools to efficiently make comparisons.

In short, a data science library using Canalyst's API, developed for securities analysis using Python.

  • Search KPI
  • Company data Dataframes (one company or many)
  • Charts
  • Model update (scenario analysis)
  • Visualize formula builds

Installation

Installation instructions can be found on our PyPI page

Usage

Search Guidance:

Candas is built to facilitate easy discovery of guidance in our Modelverse. You can search guidance for key items, either filtered by a ticker / ticker list or just across the entire Modelverse.

Guidance Example:

canalyst_search.search_guidance_time_series(ticker = "", #any ticker or list of tickers 
                sector="Consumer", #path in our nomenclature is a hierarchy of sectors
                file_name="", #file name is a proxy for company name
                time_series_name="", #our range name
                time_series_description="china", #human readable row header
                most_recent=True) #most recent item or all items 

Search KPI:

Candas is also built to facilitate easy discovery of KPI names in our Modelverse.

KPI Search Example:

canalyst_search.search_time_series(ticker = "",
                 sector="Thrifts",
                 category="",
                 unit_type="percentage",
                 mo_only=True,
                 period_duration_type='fiscal_quarter',
                 time_series_name='',
                 time_series_description='total revenue growth', #guessing on the time series name
                 query = 'value > 5')

ModelSet:

The core objects in Candas are Models. Models can be arranged in a set by instantiating a ModelFrame. Instantiate a config object to handle authentication.

model_set = cd.ModelSet(ticker_list=[ticker_list],config=config)

With modelset, the model_frame attribute returns Pandas dataframes. The parameters for model_frame():

  • time_series_name: Send in a partial string as time series name, model_frame will regex search for it
  • pivot: Pivot allows for excel-model style wide data (good for comp screens)
  • mrq: True / False filters to ONLY the most recent quarter
  • period_duration_type: is fiscal_quarter or fiscal_year or blank for both
  • is_historical: True will filter to only historical, False only forecasts, or blank for both
  • n_periods: defaults to 12 but most of our models go back to 2013
  • mrq_notation: applies to pivot, and will filter to historical data and apply MRQ-n notation on the columns (a way to handle off fiscal reporters in comp screens)

Example:

model_set.model_frame(time_series_name="MO_RIS_REV",
                  is_driver="",
                  pivot=False,
                  mrq=False,
                  period_duration_type='fiscal_quarter', #or fiscal_year
                  is_historical="",
                  n_periods=12,
                  mrq_notation=False)
`

Charting:

Candas has a Canalyst standard charting library which allows for easy visualizations.

Chart Example: Chart

df_plot = df[df['ticker'].isin(['AZUL US','MESA US'])][['ticker','period_name','value']].pivot_table(values="value", index=["period_name"],columns=["ticker"]).reset_index()
p = cd.Chart(df_plot['period_name'],df_plot[["AZUL US", "MESA US"]],["AZUL US", "MESA US"], [["Periods", "Actual"]], title="MO_MA_Fuel")
p.show()

Scenario Analysis:

Candas can arrange a forecast and send it to our scenario engine via the fit() function, and get changed outputs vs the default.

Example:

return_series = "MO_RIS_EPS_WAD_Adj"
list_output = []
for ts in time_series_names:
    df_params = model_set.forecast_frame(ts,
                             n_periods=-1,
                             function_name='multiply',
                             function_value=(1.1))
    dicts_output=model_set.fit(df_params,return_series)
    for key in dicts_output.keys():
        list_output.append(dicts_output[key].head(1))

ModelMap:

Candas can show a node tree at any level of the PNL

Example:

model_set.create_model_map(ticker=ticker,time_series_name="MO_RIS_REV",col_for_labels = "time_series_description").show() #launches in a separate browser window

ModelMap and Scenario Engine Together: ModelMap example: Node Chart for Fuel Margin Fuel Margin

KPI Importance / Scenario Engine:

Use the same node tree to extract key drivers, then use our scenario engine to rank order 1% changes in KPI driver vs subsequent revenue change

Example:

#use the same node tree to extract key drivers (red nodes in the map)
df = model_set.models[ticker].key_driver_map("MO_RIS_REV")
return_series = 'MO_RIS_REV'
driver_list_df = []
for i, row in df.iterrows():

    time_series_name = row['time_series_name']
    print(f"scenario: move {time_series_name} 1% and get resultant change in {return_series}")

    #create a param dataframe for each time series name in our list
    df_1_param = model_set.forecast_frame(time_series_name,
                         n_periods=-1,
                         function_name='multiply',
                         function_value=1.01)


    d_output=model_set.fit(df_1_param,return_series) #our fit function will return a link to scenario engine JSON for audit

    df_output = model_set.filter_summary(d_output,period_type='Q')

    df_merge = pd.merge(df_output,df_1_param,how='inner',left_on=['ticker','period_name'],right_on=['ticker','period_name'])

    driver_list_df.append(df_merge) #append to a list for concatenating at the end
df = pd.concat(driver_list_df).sort_values('diff',ascending=False)[['ticker','time_series_name_y','diff']]
df = df.rename(columns={'time_series_name_y':'time_series_name'})
df['diff'] = df['diff']-1
df = df.sort_values('diff')
df.plot(x='time_series_name',y='diff',kind='barh',title=ticker+" Key Drivers Revenue Sensitivity")

KPI Rank

Support

[email protected]

Contributing

Project is currently only open to contributors through discussion with the maintainer.

Authors and acknowledgment

[email protected]

License

APL 2.0

Project status

Ongoing

Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022