Extracts data from the database for a graph-node and stores it in parquet files

Overview

subgraph-extractor

Extracts data from the database for a graph-node and stores it in parquet files

Installation

For developing, it's recommended to use conda to create an environment.

Create one with python 3.9

conda create --name subgraph-extractor python=3.9

Now activate it

conda activate subgraph-extractor

Install the dev packages (note there is no space after the .)

pip install -e .[dev]

Use

Now you can use the main entrypoint, see help for more details

subgraph_extractor --help

Creating a config files

The easiest way to start is to use the interactive subgraph config generator.

Start by launching the subgraph config generator with the location you want to write the config file to.

subgraph_config_generator --config-location subgraph_config.yaml

It will default to using a local graph-node with default username & password (postgresql://graph-node:[email protected]:5432/graph-node) If you are connecting to something else you need to specify the database connection string with --database-string.

You will then be asked to select:

  • The relevant subgraph
  • From the subgraph, which tables to extract (multi-select)
  • For each table, which column to partition on (this is typically the block number or timestamp)
  • Any numeric columns that require mapping to another type * see note below

Numeric column mappings

Uint256 is a common data type in contracts but rare in most data processing tools. The graph node creates a Postgres Numeric column for any field marked as a BigInt as it is capable of accurately storing uint256s (a common data type in solidity).

However, many downstream tools cannot handle these as numbers.

By default, these columns will be exported as bytes - a lossless representation but one that is not as usable for sums, averages, etc. This is fine for some data, such as addresses or where the field is used to pack data (e.g. the tokenIds for decentraland).

For other use cases, the data must be converted to another type. In the config file, you can specify numeric columns that need to be mapped to another type:

column_mappings:
  my_original_column_name:
    my_new_column_name:
      type: uint64

However, if the conversion does not work (e.g. the number is too large), the extraction will stop with an error. This is fine for cases where you know the range (e.g. timestamp or block number). For other cases you can specify a maximum value, default and a column to store whether the row was at most the maximum value:

column_mappings:
  my_original_column_name:
    my_new_column_name:
      type: uint64
      max_value: 18446744073709551615
      default: 0
      validity_column: new_new_column_name_valid

If the number is over 18446744073709551615, there will be a 0 stored in the column my_new_column_name and FALSE stored in new_new_column_name_valid.

If your numbers are too large but can be safely lowered for your usecase (e.g. converting from wei to gwei) you can provide a downscale value:

column_mappings:
  transfer_fee_wei:
    transfer_fee_gwei:
      downscale: 1000000000
      type: uint64
      max_value: 18446744073709551615
      default: 0
      validity_column: transfer_fee_gwei_valid

This will perform an integer division (divide and floor) the original value. WARNING this is a lossy conversion.

You may have as many mappings for a single column as you want, and the original will always be present as bytes.

The following numeric types are allowed:

  • int8, int16, int32, int64
  • uint8, uint16, uint32, uint64
  • float32, float64
  • Numeric38 (this is a numeric/Decimal column with 38 digits of precision)

Contributing

Please format everything with black and isort

black . && isort --profile=black .
Owner
Cardstack
Experience Web 3.0.
Cardstack
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022