AVD Quickstart Containerlab

Overview

AVD Quickstart Containerlab

WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example:

  • README is still work-in-progress
  • Lab configuration and adresses are hardcoded and have to be redefined in many different files if you setup is different. That will be simplified before the final release.
  • Some workflow and code optimization required.

Overview

This repository helps to build your own AVD test lab based on Containerlab in minutes. The main target is to provide an easy way to build the environment to learn and test AVD automation. The lab can be used together with CVP VM, but it's not mandatory.

WARNING: if CVP VM is part of the lab, make sure that it's reachable and credentials configured on CVP are matching the lab.

Release Notes:

  • 0.1
    • initial release with many shortcuts
  • 0.2
    • Fix bugs.
    • Improve lab topology.
    • Improve lab workflow.
    • Add EVPN AA scenario.

Lab Prerequisites

The lab requires a single Linux host (Ubuntu server recommended) with Docker and Containerlab installed. It's possible to run Containerlab on MacOS, but that was not tested. Dedicated Linux machine is currently the preferred option.

To test AVD with CVP, KVM can be installed on the same host. To install KVM, check this guide or any other resource available on internet. Once KVM is installed, you can use one of the following repositories to install CVP:

It is definitely possible to run CVP on a dedicated host and a different hypervisor as long as it can be reached by cLab devices.

NOTE: to use CVP VM with container lab it's not required to recompile Linux core. That's only required if you plan to use vEOS on KVM for you lab setup.

The lab setup diagram:

lab diagram

How To Use The Lab

  1. Clone this repository to your lab host: git clone https://github.com/arista-netdevops-community/avd-quickstart-containerlab.git
  2. It is recommended to remove git remote as changes are not supposed to be pushed to the origin: git remote remove origin
  3. Change to the lab directory: cd avd-quickstart-containerlab
  4. Before running the lab it is recommended to create a dedicated git branch for you lab experiments to keep original branch clean.
  5. Check makefile help for the list of commands available: make help
[email protected]:~/avd-quickstart-containerlab$ make help
avd_build_cvp                  build configs and configure switches via eAPI
avd_build_eapi                 build configs and configure switches via eAPI
build                          Build docker image
clab_deploy                    Deploy ceos lab
clab_destroy                   Destroy ceos lab
clab_graph                     Build lab graph
help                           Display help message
inventory_evpn_aa              onboard devices to CVP
inventory_evpn_mlag            onboard devices to CVP
onboard                        onboard devices to CVP
rm                             Remove all containerlab directories
run                            run docker image. This requires cLab "custom_mgmt" to be present
  1. If you don't have cEOS image on your host yet, download it from arista.com and import. Make sure that image name is matching the parameters defined in CSVs_EVPN_AA/clab.yml or CSVs_EVPN_MLAG/clab.yml
  2. Use make build to build avd-quickstart:latest container image. If that was done earlier and the image already exists, you can skip this step.
  3. Run make inventory_evpn_aa or make inventory_evpn_mlag to build the inventory for EVPN AA or MLAG scenario. Ideally AVD inventroy must be a different repository, but for simplicity script will generate inventory in the current directory.
  4. Review the inventory generated by avd-quickstart. You can optionally git commit the changes.
  5. Run make clab_deploy to build the containerlab. Wait until the deployment will finish.
  6. Execute make run to run avd-quickstart container.
  7. If CVP VM is used in the lab, onboard cLab switches with make onboard. Once the script behind this shortcut wil finish, devices will appear in the CVP inventory.
  8. To execute Ansible AVD playbook, use make avd_build_eapi or make avd_build_cvp shortcuts. That will execute playbook/fabric-deploy-eapi.yml or playbook/fabric-deploy-cvp.yml.
  9. Run make avd_validate to execute AVD state validation playbook playbooks/validate-states.yml.
  10. Run make avd_snapshot if you want to collect a network snapshot with playbooks/snapshot.yml.
  11. Connect to hosts and switches and run some pings, show commands, etc. To connect to a lab device, you can type it's hostname in the container:

connect to a device from the container

NOTE: device hostnames are currently hardcoded inside the avd-quickstart container. If you have customized the inventory, ssh to the device manually. That will be improved in the coming versions.

You can optionally git commit the changes and start playing with the lab. Use CSVs to add some VLANs, etc. for example. Re-generate the inventory and check how the AVD repository data changes.

How To Destroy The Lab

  1. Exit the avd-quickstart container by typing exit
  2. Execute make clab_destroy to destroy the containerlab.
  3. Execute make rm to delete the generated AVD inventory.
Owner
Carl Buchmann
Systems Engineer @ Arista Networks Passionate about designing networks and automating them!
Carl Buchmann
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022