Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

Overview

EMGDecomp

DOI

Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports GPU via CUDA and distributed computation via Dask.

Installation

pip install emgdecomp

For those that want to either use Dask and/or CUDA, you can alternatively run:

pip install emgdecomp[dask]
pip install emgdecomp[cuda]

Usage

Basic

# data should be a numpy array of n_channels x n_samples
sampling_rate, data = fetch_data(...)

decomp = EmgDecomposition(
  params=EmgDecompositionParams(
    sampling_rate=sampling_rate
  ))

firings = decomp.decompose(data)
print(firings)

The resulting firings object is a NumPy structured array containing the columns source_idx, discharge_samples, and discharge_seconds. source_idx is a 0-indexed ID for each "source" learned from the data; each source is a putative motor unit. discharge_samples indicates the sample at which the source was detected as "firing"; note that the algorithm can only detect sources up to a delay. discharge_seconds is the conversion of discharge_samples into seconds via the passed-in sampling rate.

As a structured NumPy array, the resulting firings object is suitable for conversion into a Pandas DataFrame:

import pandas as pd
print(pd.DataFrame(firings))

And the "sources" (i.e. components corresponding to motor units) can be interrogated as needed via the decomp.model property:

model = decomp.model
print(model.components)

Advanced

Given an already-fit EmgDecomposition object, you can then decompose a new batch of EMG data with its existing sources via transform:

# Assumes decomp is already fit
new_data = fetch_more_data(...)
new_firings = decomp.transform(new_data)
print(new_firings)

Alternatively, you can add new sources (i.e. new putative motor units) while retaining the existing sources with decompose_batch:

# Assumes decomp is already fit

more_data = fetch_even_more_data(...)
# Firings corresponding to sources that were both existing and newly added
firings2 = decomp.decompose_batch(more_data)
# Should have at least as many components as before decompose_batch()
print(decomp.model.components)

Finally, basic plotting capabilities are included as well:

from emgdecomp.plots import plot_firings, plot_muaps
plot_muaps(decomp, data, firings)
plot_firings(decomp, data, firings)

File I/O

The EmgDecomposition class is equipped with load and save methods that can save/load parameters to disk as needed; for example:

with open('/path/to/decomp.pkl', 'wb') as f:
  decomp.save(f)

with open('/path/to/decomp.pkl', 'rb') as f:
  decomp_reloaded = EmgDecomposition.load(f)

Dask and/or CUDA

Both Dask and CUDA are supported within EmgDecomposition for support for distributed computation across workers and/or use of GPU acceleration. Each are controlled via the use_dask and use_cuda boolean flags in the EmgDecomposition constructor.

Parameter Tuning

See the list of parameters in EmgDecompositionParameters. The defaults on master are set as they were used for Formento et. al, 2021 and should be reasonable defaults for others.

Documentation

See documentation on classes EmgDecomposition and EmgDecompositionParameters for more details.

Acknowledgements

If you enjoy this package and use it for your research, you can:

  • cite the Journal of Neural Engineering paper, Formento et. al 2021, for which this package was developed: TODO
  • cite this github repo using its DOI: 10.5281/zenodo.5641426
  • star this repo using the top-right star button.

Contributing / Questions

Feel free to open issues in this project if there are questions or feature requests. Pull requests for feature requests are very much encouraged, but feel free to create an issue first before implementation to ensure the desired change sounds appropriate.

You might also like...
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Statistical package in Python based on Pandas
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

A Python package for the mathematical modeling of infectious diseases via compartmental models
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenario.

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

A powerful data analysis package based on mathematical step functions.  Strongly aligned with pandas.
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

Python Package for DataHerb: create, search, and load datasets.
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

Comments
  • Expose functions for validation

    Expose functions for validation

    From https://github.com/carmenalab/emgdecomp/issues/3:

    Another question is that could you please provide some interface like '_assert_decomp_successful' at https://github.com/carmenalab/emgdecomp/blob/master/emgdecomp/tests/test_decomposition.py#L140 for validation?

    cc @shihan-ma

    opened by pbotros 1
  • Server restart error

    Server restart error

    Hi, Thanks for your repository!

    I used the scripts in the readme and tried to decompose a 10-s simulated signal (64 channels * 20480 samples). It works at most times, producing around 10 MUs against 18 real ones. However, sometimes our server restarted after running the scripts three or four times. We found that the program stuck at https://github.com/carmenalab/emgdecomp/blob/master/emgdecomp/decomposition.py#L405. After converting 'whitening_matrix' and 'normalized_data' to np.float32, the error decreases but still happens sometimes. Could you please give me some advice on the reason that induced the restart of the server? The memory seems okay and we did not use CUDA at this point.

    Another question is that could you please provide some interface like '_assert_decomp_successful' at https://github.com/carmenalab/emgdecomp/blob/master/emgdecomp/tests/test_decomposition.py#L140 for validation?

    Thanks!

    opened by shihan-ma 3
Releases(v0.1.0)
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Sample code for Harry's Airflow online trainng course

Sample code for Harry's Airflow online trainng course You can find the videos on youtube or bilibili. I am working on adding below things: the slide p

102 Dec 30, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
Clean and reusable data-sciency notebooks.

KPACUBO KPACUBO is a set Jupyter notebooks focused on the best practices in both software development and data science, namely, code reuse, explicit d

Matvey Morozov 1 Jan 28, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 09, 2023
Gathering data of likes on Tinder within the past 7 days

tinder_likes_data Gathering data of Likes Sent on Tinder within the past 7 days. Versions November 25th, 2021 - Functionality to get the name and age

Alex Carter 12 Jan 05, 2023
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022