A Python framework for conversational search

Overview

Chatty Goose

Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting


PyPI LICENSE

Installation

  1. Make sure Java 11+ and Python 3.7+ are installed

  2. Install the chatty-goose PyPI module

pip install chatty-goose
  1. If you are using T5 or BERT, make sure to install PyTorch 1.4.0 - 1.7.1 using your specific platform instructions. Note that PyTorch 1.8 is currently incompatible due to the transformers version we currently use. Also make sure to install the corresponding torchtext version.

  2. Download the English model for spaCy

python -m spacy download en_core_web_sm

Quickstart Guide

The following example shows how to initialize a searcher and build a ConversationalQueryRewriter agent from scratch using HQE and T5 as first-stage retrievers, and a BERT reranker. To see a working example agent, see chatty_goose/agents/chat.py.

First, load a searcher

from pyserini.search import SimpleSearcher

# Option 1: load a prebuilt index
searcher = SimpleSearcher.from_prebuilt_index("INDEX_NAME_HERE")
# Option 2: load a local Lucene index
searcher = SimpleSearcher("PATH_TO_INDEX")

searcher.set_bm25(0.82, 0.68)

Next, initialize one or more first-stage CQR retrievers

from chatty_goose.cqr import Hqe, Ntr
from chatty_goose.settings import HqeSettings, NtrSettings

hqe = Hqe(searcher, HqeSettings())
ntr = Ntr(NtrSettings())

Load a reranker

from chatty_goose.util import build_bert_reranker

reranker = build_bert_reranker()

Create a new RetrievalPipeline

from chatty_goose.pipeline import RetrievalPipeline

rp = RetrievalPipeline(searcher, [hqe, ntr], searcher_num_hits=50, reranker=reranker)

And we're done! Simply call rp.retrieve(query) to retrieve passages, or call rp.reset_history() to reset the conversational history of the retrievers.

Running Experiments

  1. Clone the repo and all submodules (git submodule update --init --recursive)

  2. Clone and build Anserini for evaluation tools

  3. Install dependencies

pip install -r requirements.txt
  1. Follow the instructions under docs/cqr_experiments.md to run experiments using HQE, T5, or fusion.

Example Agent

To run an interactive conversational search agent with ParlAI, simply run chat.py. By default, we use the CAsT 2019 pre-built Pyserini index, but it is possible to specify other indexes using the --from_prebuilt flag. See the file for other possible arguments:

python -m chatty_goose.agents.chat

Alternatively, run the agent using ParlAI's command line interface:

python -m parlai interactive --model chatty_goose.agents.chat:ChattyGooseAgent

We also provide instructions to deploy the agent to Facebook Messenger using ParlAI under examples/messenger.

Comments
  • Add baselines for CAsT 2020

    Add baselines for CAsT 2020

    Need someone help to add CAsT 2020 baseline results:

    • [ ] Naive: CQR without canonical responses
    • [ ] Canonical: CQR with canonical (manual) response

    CQR methods: HQE /Ntr (T5)

    enhancement help wanted 
    opened by justram 2
  • Running HQE and getting the reformulated queries

    Running HQE and getting the reformulated queries

    Dear authors,

    I am trying to use your method in some of my work. For that, I need to get the reformulated queries (instead of only the generated ranked hits).

    I am trying to run the HQE experiment as indicated using:

    python -m experiments.run_retrieval \
          --experiment hqe \
          --hits 1000 \
          --sparse_index cast2019 \
          --qid_queries $input_query_json \
          --output ./output/hqe_bm25 
    

    However, when I print the arguments passed inside the retrieval pipeline (L101 of retrieval_pipeline.py) I get as query the raw/original/last-turn query string, and as manual_context_buffer[turn_id] simply None. If I'm not mistaken, that means that running the specific experiment equals to no reformulation being done at all. Can you check/confirm this?

    Digging more into the code, it seems to me that the queries I'd like to access are inside cqr_queries, but still, it seems to me that context should be empty/None in that case - probably resulting to no reformulation done at all.

    opened by littlewine 1
  • Query rewriting fix

    Query rewriting fix

    Thank you with the project.

    The fix to below will be hits = rp.retrieve(query, manual_context_buffer[turn_id-1] if turn_id!=0 else None), to pass the last previous canonical response.

    https://github.com/castorini/chatty-goose/blob/f9c21c8b7b6194d11d7aec5b4e218174cde98418/experiments/run_retrieval.py#L100

    opened by xeniaqian94 1
  • Update based on Pyserini==0.14.0 and fix canonical response bug

    Update based on Pyserini==0.14.0 and fix canonical response bug

    Main change:

    1. change --dense_index from temporary one to pyserini prebuilt index name
    2. fix canonical response bug, which previously add current response to context
    3. since now we have --dense_index, change option name --index to --sparse_index
    opened by jacklin64 0
  • Add chatty goose support for dense retrieval and hybrid search for T5 and CQE

    Add chatty goose support for dense retrieval and hybrid search for T5 and CQE

    New features added: (only for T5 and CQE, may consider HQE in the future) (1) Dense retrieval (2) Dense-sparse hybrid retrieval

    Some arg might be confused and may be changed in the future: (1) --index, --dense_index: may change to --sparse_index and --dense_index (2) --experiment now has options (hqe,cqe,t5,fusion,cqe_t5_fusion) may change to (hqe,cqe,t5,hqe_t5fusion,cqe_t5_fusion)

    opened by jacklin64 0
  • Add cast2020 baseline

    Add cast2020 baseline

    This PR adds both naive and canonical baselines for CAsT2020 topics. The results are overall lower as compared to CAst2019 and the results from the canonical run are only slightly better for some metrics as compared to results from the naive run.

    Resolves #23

    opened by saileshnankani 0
  • Add support for canonical response

    Add support for canonical response

    This PR adds support for using manual_canonical_result_id in the CAsT2020 data for both ntr and hqe (for #23).

    For ntr, rewrite uses the passage corresponding to the canonical document in the history. We only use 1 passage in the historical context as otherwise, it exceed 512 tokens limit. For e.g., it uses q1/P1/q2 and then q1/q2/P2/q3 and so on.

    enhancement 
    opened by saileshnankani 0
  • CQR Replication

    CQR Replication

    Add CQR replication for Fusion BM25

    Library versions used: torch==1.7.0 torchvision==0.8.1 torchtext==0.8


    Results:

    map                   	all	0.2584
    recall_1000           	all	0.8028
    ndcg_cut_1            	all	0.3353
    ndcg_cut_3            	all	0.3247
    

    Details and reproduction results can be found in the notebook

    opened by saileshnankani 0
  • Rename classes and update messenger bot

    Rename classes and update messenger bot

    Breaking changes:

    Renamed several classes to follow Python conventions / be more consistent

    • chatty_goose.agents.cqragent -> chatty_goose.agents.chat
    • HQE -> Hqe
    • T5_NTR -> Ntr
    • HQESettings -> HqeSettings
    • T5Settings -> NtrSettings
    • CQRType -> CqrType
    • CQRSettings -> CqrSettings
    • CQR -> ConversationalQueryRewriter
    opened by edwinzhng 0
  • document spaCy model dependency

    document spaCy model dependency

    With a fresh install, we get the following error if we try to run anything:

    OSError: [E050] Can't find model 'en_core_web_sm'. It doesn't seem to be a shortcut link, a Python package or a valid path to a data directory.
    

    Solution is:

    $ python -m spacy download en_core_web_sm
    

    We should document this.

    opened by lintool 0
  • PyTorch version: needs Torch 1.7 (won't work with 1.8)

    PyTorch version: needs Torch 1.7 (won't work with 1.8)

    With a from-scratch installation, the module pulls in Torch 1.8, which causes this error:

    ImportError: cannot import name 'SAVE_STATE_WARNING' from 'torch.optim.lr_scheduler' (/anaconda3/envs/chatty-goose-test/lib/python3.7/site-packages/torch/optim/lr_scheduler.py)
    

    Downgrading fixes the issue:

    $ pip install torch==1.7.1 torchtext==0.8.1
    

    Should we pin the version in our module dependencies? Or at the very least this needs to be documented.=

    opened by lintool 0
  • dependency conflict

    dependency conflict

    Hi,

    When I install chatty-goose from github using:

    python -m pip install git+https://github.com/castorini/chatty-goose.git
    
    

    I met this issue:

    ERROR: Cannot install chatty-goose and chatty-goose==0.2.0 because these package versions have conflicting dependencies.
    
    The conflict is caused by:
        chatty-goose 0.2.0 depends on pyserini==0.14.0
        pygaggle 0.0.3.1 depends on pyserini==0.10.1.0
    

    It seems that chatty-goose requires pyserini==0.14.0 as well as pygaggle 0.0.3.1. However, pygaggle 0.0.3.1 and pyserini==0.14.0 do not play nice with each other

    Could someone provide some help?

    Thanks!

    opened by dayuyang1999 1
  • Expansion to new datasets

    Expansion to new datasets

    Does it make sense to expand Chatty Goose to new datasets? For example:

    • MANtIS - a multi-domain information seeking dialogues dataset: https://guzpenha.github.io/MANtIS/
    • ClariQ - Search-oriented Conversational AI (SCAI) EMNLP https://github.com/aliannejadi/ClariQ
    enhancement 
    opened by lintool 1
  • Checkpoint transformation

    Checkpoint transformation

    According to @edwinzhng's replication log, we have a reranker checkpoint mismatch issue. Currently, we have diffs in our reranking model and the pygaggle's default model.

    Related to this issue: I think we need a folder to put/track our tf2torch ckpt transformation/sanity check scripts?

    opened by justram 0
Releases(0.2.0)
  • 0.2.0(May 7, 2021)

    Breaking changes

    Renamed several classes to follow Python conventions / be more consistent

    chatty_goose.agents.cqragent -> chatty_goose.agents.chat HQE -> Hqe T5_NTR -> Ntr HQESettings -> HqeSettings T5Settings -> NtrSettings CQRType -> CqrType CQRSettings -> CqrSettings CQR -> ConversationalQueryRewriter

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Mar 8, 2021)

    BREAKING CHANGES

    • Integrate ParlAI Facebook Messenger example for a demo by @edwinzhng
    • Integrate Pyserini/Pygaggle for a reference implementation of multi-stage passage retrieval by @edwinzhng
    • Add replication log for TREC CAsT 2019 conversational passage retrieval task by @edwinzhng
    Source code(tar.gz)
    Source code(zip)
Owner
Castorini
Deep learning for natural language processing and information retrieval at the University of Waterloo
Castorini
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021