FcaNet: Frequency Channel Attention Networks

Related tags

Deep LearningFcaNet
Overview

FcaNet: Frequency Channel Attention Networks

PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks".

alt text

Simplest usage

Models pretrained on ImageNet can be simply accessed by (without any configuration or installation):

model = torch.hub.load('cfzd/FcaNet', 'fca34' ,pretrained=True)
model = torch.hub.load('cfzd/FcaNet', 'fca50' ,pretrained=True)
model = torch.hub.load('cfzd/FcaNet', 'fca101' ,pretrained=True)
model = torch.hub.load('cfzd/FcaNet', 'fca152' ,pretrained=True)

Install

Please see INSTALL.md

Models

Classification models on ImageNet

Due to the conversion between FP16 training and the provided FP32 models, the evaluation results are slightly different(max -0.06%/+0.05%) compared with the reported results.

Model Reported Evaluation Results Link
FcaNet34 75.07 75.02 GoogleDrive/BaiduDrive(code:m7v8)
FcaNet50 78.52 78.57 GoogleDrive/BaiduDrive(code:mgkk)
FcaNet101 79.64 79.63 GoogleDrive/BaiduDrive(code:8t0j)
FcaNet152 80.08 80.02 GoogleDrive/BaiduDrive(code:5yeq)

Detection and instance segmentation models on COCO

Model Backbone AP AP50 AP75 Link
Faster RCNN FcaNet50 39.0 61.1 42.3 GoogleDrive/BaiduDrive(code:q15c)
Faster RCNN FcaNet101 41.2 63.3 44.6 GoogleDrive/BaiduDrive(code:pgnx)
Mask RCNN Fca50 det
Fca50 seg
40.3
36.2
62.0
58.6
44.1
38.1
GoogleDrive/BaiduDrive(code:d9rn)

Training

Please see launch_training_classification.sh and launch_training_detection.sh for training on ImageNet and COCO, respectively.

Testing

Please see launch_eval_classification.sh and launch_eval_detection.sh for testing on ImageNet and COCO, respectively.

FAQ

Since the paper is uploaded to arxiv, many academic peers ask us: the proposed DCT basis can be viewed as a simple tensor, then how about learning the tensor directly? Why use DCT instead of learnable tensor? Learnable tensor can be better than DCT.

Our concrete answer is: the proposed DCT is better than the learnable way, although it is counter-intuitive.

Method ImageNet Top-1 Acc Link
Learnable tensor, random initialization 77.914 GoogleDrive/BaiduDrive(code:p2hl)
Learnable tensor, DCT initialization 78.352 GoogleDrive/BaiduDrive(code:txje)
Fixed tensor, random initialization 77.742 GoogleDrive/BaiduDrive(code:g5t9)
Fixed tensor, DCT initialization (Ours) 78.574 GoogleDrive/BaiduDrive(code:mgkk)

To verify this results, one can select the cooresponding types of tensor in the L73-L83 in model/layer.py, uncomment it and train the whole network.

TODO

  • Object detection models
  • Instance segmentation models
  • Fix the incorrect results of detection models
  • Make the switching between configs more easier
Comments
  • About the performance on cifar10 or cifar100.

    About the performance on cifar10 or cifar100.

    Thanks for your work!!

    Have you tried using fcanet to train classification tasks on cifar10 or cifar100?. If you have tried, what is the frequency components setting?

    opened by NNNNAI 14
  • 有关self.dct_h和self.dct_w的设置?

    有关self.dct_h和self.dct_w的设置?

    在这个类中MultiSpectralAttentionLayer有以下部分。 if h != self.dct_h or w != self.dct_w: x_pooled = torch.nn.functional.adaptive_avg_pool2d(x, (self.dct_h, self.dct_w)) # If you have concerns about one-line-change, don't worry. :) # In the ImageNet models, this line will never be triggered. # This is for compatibility in instance segmentation and object detection.

    如果我的任务是目标检测,我该怎么设置self.dct_h和self.dct_w?

    opened by XFR1998 6
  • 2d dct FLOPs computing method

    2d dct FLOPs computing method

    Hi, I noticed that in your paper you computed FCAnet model FLOPs.

    I wonder how do you compute the FLOPs of 2d dct? Could you provide your formula or code?

    Thanks!

    opened by TianhaoFu 5
  • What's the difference between FcaBottleneck and FcaBasicBlock ?

    What's the difference between FcaBottleneck and FcaBasicBlock ?

    As in your code, the FcaBottleneck expansion is 4 and FcaBasicBlock is 1, FcaBottleneck has one more layer of convolution than FcaBasicBlock, so how should I choose which module to use ?

    opened by meiguoofa 3
  • 关于通道分组

    关于通道分组

    你好,我是一名深度学习初学者,我添加了两个FCA模块使原模型的mIOU提升了2.3,效果很好; 然而对于通道分组,我有一些其他的看法; 如果分组的通道中表示不同的信息,每个分组再使用不同的频率分量,这似乎会造成更多的信息丢失吧,因为DCT可以看作是一种加权和,可以从论文中看到除了GAP是对每个通道上像素的一视同仁,其他的都是对空间上某一个或几个部分注意的更多,这显然是存在偏颇的,这似乎也能解释为什么单个频率分量实验中GAP的效果最好;在这种情况下,对通道进行分组,或许会造成更多的信息损失? 我仔细思考了下,我认为FCAwork的原因主要是存在通道冗余以及DCT加权形成的一种“互补” 因为存在通道冗余,进行通道分组时可能某些分组中的信息相近,并且这些分组的权重是“互补”的,比如一个权重矩阵更注重左半边,一个更注重右半边这样。似乎模块学习这种‘稀疏’的关系效果会更好。 可以认为FAC比SE更充分的使用了冗余的通道。 考虑了两个实验来证明, 不对减小输入的通道数,将FCA与原模型或是SE进行对比,当通道减少到一定程度时,信息没有那么冗余,这时应该会有大量的信息丢失,精度相较于原模型更低; 关于频率分量的选择,选取某些“对称”“互补”的权重矩阵,而不是通过单个频率分量的性能的来选择,并且去除那些"混乱”的权重矩阵,因为单个频率分量证明这种混乱的权重并没有简单分块的效果好 另外可以在大通道数使用大的分组,在小通道数使用小的分组,来检验是否会获得更好的性能

    不能完全表达我的意思,如有错误,恳请指出!

    opened by Asthestarsfalll 2
  • 跑您的模型的时候遇到的一些问题

    跑您的模型的时候遇到的一些问题

    您好,非常欣赏您的idea,所以尝试跑一下您的分类模型。 我下载了ImageNet2012数据集之后,尝试启动您的模型,遇到了以下问题,想请教一下是否我的哪些设置出错了?

    错误信息如下: Traceback (most recent call last): File "main.py", line 643, in main() File "main.py", line 389, in main avg_train_time = train(train_loader, model, criterion, optimizer, epoch, logger, scheduler) File "main.py", line 471, in train prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) File "main.py", line 631, in accuracy correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.

    opened by LihuiNb 2
  • selecting frequency components

    selecting frequency components

    Hi, I want to know how did you select the frequency components like Figure6? I want to select 1, 3, 6, 10 frequencies like zigzag DCT.

    And, I want to know the meaning of the numbers in the layer.py.

    num_freq = int(method[3:])
    if 'top' in method:
        all_top_indices_x = [0,0,6,0,0,1,1,4,5,1,3,0,0,0,3,2,4,6,3,5,5,2,6,5,5,3,3,4,2,2,6,1]
        all_top_indices_y = [0,1,0,5,2,0,2,0,0,6,0,4,6,3,5,2,6,3,3,3,5,1,1,2,4,2,1,1,3,0,5,3]
        mapper_x = all_top_indices_x[:num_freq]
        mapper_y = all_top_indices_y[:num_freq]
    elif 'low' in method:
        all_low_indices_x = [0,0,1,1,0,2,2,1,2,0,3,4,0,1,3,0,1,2,3,4,5,0,1,2,3,4,5,6,1,2,3,4]
        all_low_indices_y = [0,1,0,1,2,0,1,2,2,3,0,0,4,3,1,5,4,3,2,1,0,6,5,4,3,2,1,0,6,5,4,3]
        mapper_x = all_low_indices_x[:num_freq]
        mapper_y = all_low_indices_y[:num_freq]
    elif 'bot' in method:
        all_bot_indices_x = [6,1,3,3,2,4,1,2,4,4,5,1,4,6,2,5,6,1,6,2,2,4,3,3,5,5,6,2,5,5,3,6]
        all_bot_indices_y = [6,4,4,6,6,3,1,4,4,5,6,5,2,2,5,1,4,3,5,0,3,1,1,2,4,2,1,1,5,3,3,3]
        mapper_x = all_bot_indices_x[:num_freq]
        mapper_y = all_bot_indices_y[:num_freq]
    else:
        raise NotImplementedError
    return mapper_x, mapper_y
    
    opened by InukKang 1
  • 不大一致

    不大一致

    在layer.py中有: class MultiSpectralAttentionLayer(torch.nn.Module):中有 self.dct_layer = MultiSpectralDCTLayer(dct_h, dct_w, mapper_x, mapper_y, channel) 可见dct_h在前, dct_w在后 就是h在前,w在后 而在class MultiSpectralDCTLayer(nn.Module):中 def init(self, width, height, mapper_x, mapper_y, channel): 可见 width在前,height在后,就是w在前,h在后 请问这有什么说处么?我晕了

    opened by desertfex 1
  • dct_h and dct_w

    dct_h and dct_w

    How can I set dct_h and dct_w if i want to add FCA layer into another model. My feature maps for the layer I want to inset Fca layer are 160x160, 80x80, 40x40, 20x20

    Please advise.

    opened by myasser63 5
  • 想请问一下代码中bot是怎么选取的代表什么意思

    想请问一下代码中bot是怎么选取的代表什么意思

    elif 'bot' in method:
        all_bot_indices_x = [6,1,3,3,2,4,1,2,4,4,5,1,4,6,2,5,6,1,6,2,2,4,3,3,5,5,6,2,5,5,3,6]
        all_bot_indices_y = [6,4,4,6,6,3,1,4,4,5,6,5,2,2,5,1,4,3,5,0,3,1,1,2,4,2,1,1,5,3,3,3]
    
    opened by Liutingjin 1
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022