BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

Related tags

Deep LearningBossNAS
Overview

BossNAS

This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search. [pdf link]

Illustration of the Siamese supernets training with ensemble bootstrapping.

Illustration of the fabric-like Hybrid CNN-transformer Search Space with flexible down-sampling positions.

Our Results and Trained Models

  • Here is a summary of our searched models:

    Model MAdds Steptime Top-1 (%) Top-5 (%) Url
    BossNet-T0 w/o SE 3.4B 101ms 80.5 95.0 checkpoint
    BossNet-T0 3.4B 115ms 80.8 95.2 checkpoint
    BossNet-T0^ 5.7B 147ms 81.6 95.6 same as above
    BossNet-T1 7.9B 156ms 81.9 95.6 checkpoint
    BossNet-T1^ 10.5B 165ms 82.2 95.7 same as above
  • Here is a summary of architecture rating accuracy of our method:

    Search space Dataset Kendall tau Spearman rho Pearson R
    MBConv ImageNet 0.65 0.78 0.85
    NATS-Bench Ss Cifar10 0.53 0.73 0.72
    NATS-Bench Ss Cifar100 0.59 0.76 0.79

Usage

1. Requirements

  • Install PyTorch 1.7.0+ and torchvision 0.8.1+, for example:
conda install -c pytorch pytorch torchvision
pip install timm==0.3.2

2. Retrain or Evaluate our BossNet-T models

  • First, move to retraining code directory to perform Retraining or Evaluation.

    cd HyTra_retraining

    Our retraining code of BossNet-T is based on DeiT repository.

  • You can evaluate our BossNet-T models with the following command:

    python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model bossnet_T0 --input-size 224 --batch-size 128 --data-path /PATH/TO/ImageNet --num_workers 8 --eval --resume PATH/TO/BossNet-T0-80_8.pth
    python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model bossnet_T1 --input-size 224 --batch-size 128 --data-path /PATH/TO/ImageNet --num_workers 8 --eval --resume PATH/TO/BossNet-T1-81_9.pth

    Please download our checkpoint files from the result table. Please change the --nproc_per_node option to suit your GPU numbers, and change the --data-path, --resume and --input-size accordingly.

  • You can retrain our BossNet-T models with the following command:

    Please change the --nproc_per_node and --data-path accordingly. Note that the learning rate will be automatically scaled according to the GPU numbers and batchsize. We recommend training with 128 batchsize and 8 GPUs.

    python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model bossnet_T0 --input-size 224 --batch-size 128 --data-path /PATH/TO/ImageNet --num_workers 8
    python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model bossnet_T1 --input-size 224 --batch-size 128 --data-path /PATH/TO/ImageNet --num_workers 8

Architecture of our BossNet-T0

3. Evaluate architecture rating accuracy of BossNAS

  • You can get the ranking correlations of BossNAS on MBConv search space with the following commands:

    cd MBConv_ranking
    python get_model_score_mbconv.py

  • You can get the ranking correlations of BossNAS on NATS-Bench Ss with the following commands:
    cd NATS_SS_ranking
    python get_model_score_nats.py

Citation

@article{li2021bossnas,
  author = {Li, Changlin and
            Tang, Tao and
            Wang, Guangrun and
            Peng, Jiefeng and
            Wang, Bing and
            Liang, Xiaodan and
            Chang, Xiaojun},
  title = {BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search},
  journal = {arXiv:2103.12424},
  year = 2021,
}

TODO

Searching code will be released later.

Comments
  • How to select architectures from the trained supernet?

    How to select architectures from the trained supernet?

    Hi, thanks for your great work!

    I tried using your given searching code for training the supernet. But I did not figure out how to search the potential architectures from such a supernet?

    I guess the validation hook serves as such functions, but I did not find the saved path information after training one epoch. Are there other files I need to explore or just waiting for more epochs to be trained?

    Could you advise me about that, thanks in advance for your time and help!

    Best, Haoran

    opened by ranery 7
  • imagenet ACC1 is low (49.6%)  when evaluate BossNet-T0-80_8.pth

    imagenet ACC1 is low (49.6%) when evaluate BossNet-T0-80_8.pth

    Hello! I try to reproduce your model,but when I evaluate the pretrained model(BossNet-T0-80_8.pth),the ACC1 is too low! Did i miss something? Can you help me?

    The run command as follows: [email protected]:/data/juicefs_hz_cv_v3/11135821/bak/BossNAS/retraining_hytra# python main.py --model bossnet_T0 --input-size 224 --batch-size 128 --eval --resume /data/juicefs_hz_cv_v3/11135821/bak/model/BossNet-T0-80_8.pth Not using distributed mode Namespace(aa='rand-m9-mstd0.5-inc1', batch_size=128, clip_grad=None, color_jitter=0.4, cooldown_epochs=10, cutmix=1.0, cutmix_minmax=None, data_path='/data/glusterfs_cv_04/public_data/imagenet/CLS-LOC/', data_set='IMNET', decay_epochs=30, decay_rate=0.1, device='cuda', dist_url='env://', distributed=False, drop=0.0, drop_block=None, drop_path=0.1, epochs=300, eval=True, inat_category='name', input_size=224, local_rank=0, lr=0.0005, lr_noise=None, lr_noise_pct=0.67, lr_noise_std=1.0, min_lr=1e-05, mixup=0.8, mixup_mode='batch', mixup_prob=1.0, mixup_switch_prob=0.5, model='bossnet_T0', model_ema=True, model_ema_decay=0.99996, model_ema_force_cpu=False, momentum=0.9, num_workers=10, opt='adamw', opt_betas=None, opt_eps=1e-08, output_dir='output/bossnet_T0-20210804-163815', patience_epochs=10, pin_mem=True, recount=1, remode='pixel', repeated_aug=True, reprob=0.25, resplit=False, resume='/data/juicefs_hz_cv_v3/11135821/bak/model/BossNet-T0-80_8.pth', sched='cosine', seed=0, smoothing=0.1, start_epoch=0, train_interpolation='bicubic', warmup_epochs=5, warmup_lr=1e-06, weight_decay=0.05, world_size=1) Creating model: bossnet_T0 number of params: 38415960 Test: [ 0/261] eta: 0:39:36 loss: 1.9650 (1.9650) acc1: 68.2292 (68.2292) acc5: 90.1042 (90.1042) time: 9.1044 data: 4.8654 max mem: 5605 Test: [ 50/261] eta: 0:01:38 loss: 3.2916 (3.0472) acc1: 41.6667 (47.3039) acc5: 65.1042 (70.5372) time: 0.2928 data: 0.0004 max mem: 5605 Test: [100/261] eta: 0:01:01 loss: 2.9675 (3.1048) acc1: 46.8750 (45.7921) acc5: 69.2708 (69.9722) time: 0.2953 data: 0.0003 max mem: 5605 Test: [150/261] eta: 0:00:39 loss: 2.4230 (2.9457) acc1: 55.2083 (47.8960) acc5: 75.5208 (71.5370) time: 0.2989 data: 0.0003 max mem: 5605 Test: [200/261] eta: 0:00:20 loss: 2.6540 (2.9105) acc1: 48.4375 (48.1913) acc5: 68.7500 (71.3490) time: 0.3023 data: 0.0002 max mem: 5605 Test: [250/261] eta: 0:00:03 loss: 1.6506 (2.8344) acc1: 61.9792 (49.0310) acc5: 83.8542 (72.0431) time: 0.3036 data: 0.0003 max mem: 5605 Test: [260/261] eta: 0:00:00 loss: 1.6135 (2.8001) acc1: 65.6250 (49.5740) acc5: 86.4583 (72.5500) time: 0.3888 data: 0.0001 max mem: 5605 Test: Total time: 0:01:28 (0.3397 s / it)

    opened by fanliaveline 4
  • Some questions about the code and paper.

    Some questions about the code and paper.

    Hi, great work!

    I have some question about the code and paper:

    1. In section 3.3 of the paper which is about the searching phase, when calculating the evaluation loss in equation(5) and (6) the probability ensemble of the architecture population is from the online network, but in the code it's from the target network, which makes me confused.

    2. Still in section 3.3, it is mentioned that the searching are with an evolutionary algorithm, I read the references[12] and [54] but still have no clue how the evolutionary algorithm is implemented in the code, to be specific, how the architecture population is evolved?

    3. In the code of hytra_supernet.py, the stage depths are set to [4,3,2,2], is there a particular reason to set so? why not use [4,4,4,4] so that all possible pathes can be chosen?

    Thanks a lot for your time and I'm looking forward to your reply!

    opened by zhy0860 2
  • About formulation (1) and (6)

    About formulation (1) and (6)

    Hi, very thanks for sharing your nice work. In the paper's formulation (1) and (6), all has λ_k. But it seems to be no explaination about them. Could you please point it out here.

    opened by NickChang97 2
  • Some questions about BossNAS

    Some questions about BossNAS

    Hi, thanks for your excellent work~

    It is inspiring and practical for improving the sub-net ranking correlations. But I have a few questions.

    1. Although it is beneficial to upgrade the Ranking correlation on each small stage by progressively searching, will it lead to the accumulation of error? The best path of the previous stage maybe not suitable for the following. How could explain it?
    2. Why is the ResAttn operator only searched on depth=1/2?
    3. On the hybrid search space, ensemble different resolutions output is weird, since it discards the structure information by adaptive pooling, so I don't know why it can be suitable.
    4. As shown in Table~4, Unsupv. EB is better than Supv. class. Do you have a theoretical explanation about it?
    opened by huizhang0110 2
  • Question about Ranking nats

    Question about Ranking nats

    after run code:

    cd ranking_nats
    python get_model_score_nats.py
    

    I got:

    kendall tau begin
    BossNAS: KendalltauResult(correlation=-0.534180602248828, pvalue=0.0)
    (-0.7180607093955225, 0.0)
    SpearmanrResult(correlation=-0.7341493538551311, pvalue=0.0)
    
    opened by pprp 2
  • How to obtain the searched model

    How to obtain the searched model

    I used the searching code for a small number of epochs, can you share where exactly is the best model architecture stored when any custom NAS is performed? the pth files are saved in work_dir but im not sure where the corresponding architecture is stored so I can use a custom generated model together with these weights ?

    opened by hamdjalil 3
  • Question about the code of searching second Hytra block.

    Question about the code of searching second Hytra block.

    Hi, appreciate it for your time.

    I find an issue in the code of Hytra search phase. When searching for the second block, after the first evaluation the chosen best path of the second block will be appended after the best path of the first block, then the training process is conducted in a three block structure.

    Detailed codes are as follows: (val_hook.py) if self.every_n_epochs(runner, block_inteval): best_path = results[0][0] best_path = [int(i) for i in list(best_path)]

            if len(model.best_paths) == model.start_block + 1:
                model.best_paths.pop()
            model.best_paths.append(best_path)
    

    (siamese_supernets_hytra.py ) if self.start_block > 0: for i, best_path in enumerate(self.best_paths): img_v1 = self.online_backbone(img_v1, start_block=i, forward_op=best_path, block_op=True)[0] img_v2 = self.online_backbone(img_v2, start_block=i, forward_op=best_path, block_op=True)[0]

    In other word, the searching is not continued afte a frozen best path of previous block, but with two, the best path of the current block chosen by each evaluation stage is also freezed and appended, it means the path of second block will appear twice during searching. I can't understand why doing so.

    It will lead to an issue that if the downsampling is used in the freezed best path of the second block. For instance, suppose the spatial resolution has already reached the smallest scale 1/32 in the freezed previous best path of second block, when continuing searcing if the downsampling is occured again in the current path of second block, there will be an error of mismatch in shape. It makes me confused and we did encounter this problem in our implemetation.

    I'm sorry if I haven't described the issue clearly. Thanks a lot for your time again and I'm looking forward to your reply.

    bug 
    opened by zhy0860 2
  • Running HyTra search on CIFAR10 ( or potentially on other datasets...)

    Running HyTra search on CIFAR10 ( or potentially on other datasets...)

    I have some doubts on how to search on HyTra with datasets different from Imagenet. Is it possible? I tried to run the search on CIFAR10 but it gives me this error with a HyTracifar10 config file: RuntimeError: Given groups=1, weight of size [256, 1024, 1, 1], expected input[256, 512, 4, 4] to have 1024 channels, but got 512 channels instead. This is the config file I created for this purpose. Since the configs file were not so clear to me (my fault) I simply tried to mix the NATScifar10 config file and the HytraImagenet config file to obtain a HyTracifar10 version. The model and the dataset seem to be created/loaded correctly, I think there is a kind of mismatch on size. Up to now, I'm trying to run only on CIFAR10 but my intention is to generalize the process on different datasets (not only the most famous ones). I would like to know if this generalization can be already obtained with your code (or with slight modifies) or if the work was supposed to run only on the main datasets.

    HytraCifar10 config

    import copy base = 'base.py'

    model = dict( type='SiameseSupernetsHyTra', pretrained=None, base_momentum=0.99, pre_conv=True, backbone=dict( type='SupernetHyTra', ), start_block=0, num_block=4, neck=dict( type='NonLinearNeckSimCLRProject', in_channels=2048, hid_channels=4096, out_channels=256, num_layers=2, sync_bn=False, with_bias=True, with_last_bn=False, with_avg_pool=True), head=dict(type='LatentPredictHead', size_average=True, predictor=dict(type='NonLinearNeckSimCLR', in_channels=256, hid_channels=4096, out_channels=256, num_layers=2, sync_bn=False, with_bias=True, with_last_bn=False, with_avg_pool=False)))

    dataset settings

    data_source_cfg = dict(type='NATSCifar10', root='../data/cifar/', return_label=False) train_dataset_type = 'BYOLDataset' test_dataset_type = 'StoragedBYOLDataset' img_norm_cfg = dict(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.201]) train_pipeline = [ dict(type='RandomCrop', size=32, padding=4), dict(type='RandomHorizontalFlip'), ]

    prefetch

    prefetch = False if not prefetch: train_pipeline.extend([dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) train_pipeline1 = copy.deepcopy(train_pipeline) train_pipeline2 = copy.deepcopy(train_pipeline)

    test_pipeline1 = copy.deepcopy(train_pipeline1) test_pipeline2 = copy.deepcopy(train_pipeline2) data = dict( imgs_per_gpu=256, # total 256*4(gpu)*4(interval)=4096 workers_per_gpu=2, train=dict( type=train_dataset_type, data_source=dict(split='train', **data_source_cfg), pipeline1=train_pipeline1, pipeline2=train_pipeline2), val=dict( type=test_dataset_type, data_source=dict(split='test', **data_source_cfg), pipeline1=test_pipeline1, pipeline2=test_pipeline2,), test=dict( type=test_dataset_type, data_source=dict(split='test', **data_source_cfg), pipeline1=test_pipeline1, pipeline2=test_pipeline2,))

    optimizer

    optimizer = dict(type='LARS', lr=4.8, weight_decay=0.000001, momentum=0.9, paramwise_options={ '(bn|gn)(\d+)?.(weight|bias)': dict(weight_decay=0., lars_exclude=True), 'bias': dict(weight_decay=0., lars_exclude=True)})

    apex

    use_fp16 = True

    interval for accumulate gradient

    update_interval = 8 optimizer_config = dict(update_interval=update_interval, use_fp16=use_fp16)

    learning policy

    lr_config = dict( policy='CosineAnnealing', min_lr=0., warmup='linear', warmup_iters=1, warmup_ratio=0.0001, # cannot be 0 warmup_by_epoch=True) checkpoint_config = dict(interval=1)

    runtime settings

    total_epochs = 24

    additional hooks

    custom_hooks = [ dict(type='BYOLHook', end_momentum=1., update_interval=update_interval), dict(type='RandomPathHook'), dict( type='ValBestPathHook', dataset=data['val'], bn_dataset=data['train'], initial=True, interval=2, optimizer_cfg=optimizer, lr_cfg=lr_config, imgs_per_gpu=256, workers_per_gpu=4, epoch_per_stage=6, resume_best_path='') # e.g. 'path_rank/bestpath_2.yml' ]

    resume_from = 'checkpoints/stage3_epoch3.pth'

    resume_optimizer = False

    cudnn_benchmark = True

    opened by matteogambella 0
  • Pre-trained supernet weights release

    Pre-trained supernet weights release

    Hi,

    Your approach is very impressive; I was wondering if you're planning to release the weights of the supernets you trained? (I'm specifically interested in the HyTra supernet)

    opened by AwesomeLemon 2
Owner
Changlin Li
Changlin Li
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022