3D Human Pose Machines with Self-supervised Learning

Overview

3D Human Pose Machines with Self-supervised Learning

Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self-supervised Learning”. To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019.

This repository implements a 3D human pose machine to resolve 3D pose sequence generation for monocular frames, and includes a concise self-supervised correction mechanism to enhance our model by retaining the 3D geometric consistency. The main part is written in C++ and powered by Caffe deep learning toolbox. Another is written in Python and powered by Tensorflow.

Results

We proposed results on the Human3.6M, KTH Football II and MPII dataset.

   

   

   

License

This project is Only released for Academic Research Use.

Get Started

Clone the repo:

git clone https://github.com/chanyn/3Dpose_ssl.git

or directly download from https://www.dropbox.com/s/qycpjinof2ishw9/3Dpose_ssl.tar.gz?dl=0 (including datasets and well-compiled caffe under cuda-8.0)

Our code is organized as follows:

caffe-3dssl/: support caffe
models/: pretrained models and results
prototxt/: network architecture definitions
tensorflow/: code for online refine 
test/: script that run results split by action 
tools/: python and matlab code 

Requirements

  1. NVIDIA GPU and cuDNN are required to have fast speeds. For now, CUDA 8.0 with cuDNN 5.1 has been tested. The other versions should be working.
  2. Caffe Python wrapper is required.
  3. Tensorflow 1.1.0
  4. python 2.7.13
  5. MATLAB
  6. Opencv-python

Installation

  1. Build 3Dssl Caffe

       cd $ROOT/caffe-3dssl    # Follow the Caffe installation instructions here:    #   http://caffe.berkeleyvision.org/installation.html        # If you're experienced with Caffe and have all of the requirements installed    # and your Makefile.config in place, then simply do:    make all -j 8        make pycaffe    

  1. Install Tensorflow

Datasets

  • Human3.6m

  We change annotation of Human3.6m to hold 16 points ( 'RFoot' 'RKnee' 'RHip' 'LHip' 'LKnee' 'LFoot' 'Hip' 'Spine' 'Thorax' 'Head' 'RWrist' 'RElbow'  'RShoulder' 'LShoulder' 'LElbow' 'LWrist') in keeping with MPII.

  We have provided count mean file and protocol #I & protocol #III split list of Human3.6m. Follow Human3.6m website to download videos and API. We split each video per 5 frames, you can directly download processed square data in this link.  And list format of 16skel_train/test_* is [img_path] [P12dx, P12dy, P22dx, P22dy,..., P13dx, P13dy, P13dz, P23dx, P23dy, P23dz,...] clip. Clip = 0 denote reset lstm.

  shell   # files construction   h36m   |_gt # 2d and 3d annotations splited by actions   |_hg2dh36m # 2d estimation predicted by *Hourglass*, 'square' denotes prediction of square image.   |_ours_2d # 2d prediction from our model   |_ours_3d # 3d coarse prediction of *Model Extension: mask3d*   |_16skel_train_2d3d_clip.txt # train list of *Protocol I*   |_16skel_test_2d3d_clip.txt   |_16skel_train_2d3d_p3_clip.txt # train list of *Protocol III*   |_16skel_test_2d3d_p3_clip.txt   |_16point_mean_limb_scaled_max_min.csv #16 points normalize by (x-min) / (max-min)  

  After setting up Human3.6m dataset following its illustration and download the above training/testing list. You should update “root_folder” paths in CAFFE_ROOT/examples/.../*.prototxt for images and annotation director.

  • MPII

  We crop and square single person from  all images and update 2d annotation in train_h36m.txt (resort points according to order of Human3.6m points).

    mkdir data/MPII   cd data/MPII   wget -v https://drive.google.com/open?id=16gQJvf4wHLEconStLOh5Y7EzcnBUhoM-   tar -xzvf MPII_square.tar.gz   rm -f MPII_square.tar.gz  

 

Training

Offline Phase

Our model consists of two cascade modules, so the training phase can be divided into the following steps:

cd CAFFE_ROOT
  1. Pre-train the 2D pose sub-network with MPII. You can follow CPM or Hourglass or other 2D pose estimation method. We provide pretrained CPM-caffemodel. Please put it into CAFFE_ROOT/models/.

  2. Train 2D-to-3D pose transformer module with Human3.6M. And we fix the parameters of the 2D pose sub-network. The corresponding prototxt file is in examples/2D_to_3D/bilstm.prototxt.

       sh examples/2D_to_3D/train.sh    

  1. To train 3D-to-2D pose projector module, we fix the above module weights. And we need in the wild 2D Pose dataset to help training (we choose MPII).

   sh    sh examples/3D_to_2D/train.sh    

  1. Fine-tune the whole model jointly. We provide trained model and coarse prediction of Protocol I and Protocol III.

   sh    sh examples/finetune_whole/train.sh    

  1. Model extension: Add rand mask to relieve model bias. We provide corresponding model files in examples/mask3d.

   sh    sh examples/mask3d/train.sh    

Model Inference

3D-to-2D project module is initialized from the well-trained model, and they will be updated by minimizing the difference between the predicted 2D pose and projected 2D pose.

  shell   # Step1: Download the trained model   cd PROJECT_ROOT   mkdir models   cd models   wget -v https://drive.google.com/open?id=1dMuPuD_JdHuMIMapwE2DwgJ2IGK04xhQ   unzip model_extension_mask3d.zip   rm -r model_extension_mask3d.zip   cd ../     # Step2: save coarse 3D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh . ../models/model_extension_mask3d/mask3d_iter_400000.caffemodel mask3d 5     # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d hourglass  

 

  shell   # Maybe you want to predict 2d.   # The model we use to predict 2d pose is similar to our 3dpredict model without ssl module.   # Or you can use Hourglass(https://github.com/princeton-vl/pose-hg-demo) to predict 2d pose     # Step1.1: Download the trained merge model   cd PROJECT_ROOT   mkdir models && cd models   wget -v https://drive.google.com/open?id=19kTyttzUnm_1_7HEwoNKCXPP2QVo_zcK   unzip our2d.zip   rm -r our2d.zip   # move 2d prototxt to PROJECT_ROOT/test/   mv our2d/2d ../test/   cd ../     # Step1.2: save 2D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in 2d/template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh 2d/ ../models/our2d/2d_iter_800000.caffemodel our2d 5   # replace predict 2d pose in data dir or change data_dir in tensorflow/pred_v2.py   mv our2d /data/h36m/ours_2d/bilstm2d-p1-800000       # Step2 is same as above       # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d ours  

 

  • Inference with yourself

  The only difference is that you should transfer caffemodel of 3D-to-2D project module to pkl file. We provide gen_refinepkl.py in tools/.

  sh   # Follow above Step1~2 to produce coarse 3d prediction and 2d pose.   # transfer caffemodel of SRR module to python .pkl file   python tools/gen_refinepkl.py CAFFE_ROOT CAFFEMODEL_DIR --pkl_dir model.pkl     # online refine 3D pose prediction   python pred_v2.py --trained_model model.pkl  

 

  • Evaluation

  shell   # Print MPJP   run tools/eval_h36m.m     # Visualization of 2dpose/ 3d gt pose/ 3d coarse pose/ 3d refine pose   # Please change data_root in visualization.m before running   run visualization.m  

Citation

@article{wang20193d,
  title={3D Human Pose Machines with Self-supervised Learning},
  author={Wang, Keze and Lin, Liang and Jiang, Chenhan and Qian, Chen and Wei, Pengxu},
  journal={IEEE transactions on pattern analysis and machine intelligence},
  year={2019},
  publisher={IEEE}
}
Owner
Chenhan Jiang
Chenhan Jiang
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022