Autoregressive Models in PyTorch.

Overview

Autoregressive

This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like autoregressive models.

For presentation purposes, the WaveNet-like models are applied to randomized Fourier series (1D) and MNIST (2D). In the figure below, two WaveNet-like models with different training settings make an n-step prediction on a periodic time-series from the validation dataset.

Advanced functions show how to generate MNIST images and how to estimate the MNIST digit class (progressively) p(y=class|x) from observed pixels using a conditional WaveNet p(x|y=class) and Bayes rule. Left: sampled MNIST digits, right: progressive class estimates as more pixels are observed.

Note, this library does not implement (Gated) PixelCNNs, but unrolls images for the purpose of processing in WaveNet architectures. This works surprisingly well.

Features

Currently the following features are implemented

  • WaveNet architecture and training as proposed in (oord2016wavenet)
  • Conditioning support (oord2016wavenet)
  • Fast generation based on (paine2016fast)
  • Fully differentiable n-step unrolling in training (heindl2021autoreg)
  • 2D image generation, completion, classification, and progressive classification support based on MNIST dataset
  • A randomized Fourier dataset

Presentation

A detailed presentation with theoretical background, architectural considerations and experiments can be found below.

The presentation source as well as all generated images are public domain. In case you find them useful, please leave a citation (see References below). All presentation sources can be found in etc/presentation. The presentation is written in markdown using Marp, graph diagrams are created using yEd.

If you spot errors or if case you have suggestions for improvements, please let me know by opening an issue.

Installation

To install run,

pip install https://github.com/cheind/autoregressive.git#egg=autoregressive[dev]

which requires Python 3.9 and a recent PyTorch > 1.9

Usage

The library comes with a set of pre-trained models in models/. The following commands use those models to make various predictions. Many listed commands come with additional parameters; use --help to get additional information.

1D Fourier series

Sample new signals from scratch

python -m autoregressive.scripts.wavenet_signals sample --config "models/fseries_q127/config.yaml" --ckpt "models/fseries_q127/xxxxxx.ckpt" --condition 4 --horizon 1000

The default models conditions on the periodicity of the signal. For the pre-trained model the value range is int: [0..4], corresponding to periods of 5-10secs.


Predict the shape of partially observable curves.

python -m autoregressive.scripts.wavenet_signals predict --config "models/fseries_q127/config.yaml" --ckpt "models/fseries_q127/xxxxxx.ckpt" --horizon 1500 --num_observed 50 --num_trajectories 20 --num_curves 1 --show_confidence true

2D MNIST

To sample from the class-conditional model

python -m autoregressive.scripts.wavenet_mnist sample --config "models/mnist_q2/config.yaml" --ckpt "models/mnist_q2/xxxxxx.ckpt"

Generate images conditioned on the digit class and observed pixels.

python -m autoregressive.scripts.wavenet_mnist predict --config "models/mnist_q2/config.yaml" --ckpt "models/mnist_q2/xxxxxx.ckpt" 

To perform classification

python -m autoregressive.scripts.wavenet_mnist classify --config "models/mnist_q2/config.yaml" --ckpt "models/mnist_q2/xxxxxx.ckpt"

Train

To train / reproduce a model

python -m autoregressive.scripts.train fit --config "models/mnist_q2/config.yaml"

Progress is logged to Tensorboard

tensorboard --logdir lightning_logs

To generate a training configuration file for a specific dataset use

python -m autoregressive.scripts.train fit --data autoregressive.datasets.FSeriesDataModule --print_config > fseries_config.yaml

Test

To run the tests

pytest

References

@misc{heindl2021autoreg, 
  title={Autoregressive Models}, 
  journal={PROFACTOR Journal Club}, 
  author={Heindl, Christoph},
  year={2021},
  howpublished={\url{https://github.com/cheind/autoregressive}}
}

@article{oord2016wavenet,
  title={Wavenet: A generative model for raw audio},
  author={Oord, Aaron van den and Dieleman, Sander and Zen, Heiga and Simonyan, Karen and Vinyals, Oriol and Graves, Alex and Kalchbrenner, Nal and Senior, Andrew and Kavukcuoglu, Koray},
  journal={arXiv preprint arXiv:1609.03499},
  year={2016}
}

@article{paine2016fast,
  title={Fast wavenet generation algorithm},
  author={Paine, Tom Le and Khorrami, Pooya and Chang, Shiyu and Zhang, Yang and Ramachandran, Prajit and Hasegawa-Johnson, Mark A and Huang, Thomas S},
  journal={arXiv preprint arXiv:1611.09482},
  year={2016}
}

@article{oord2016conditional,
  title={Conditional image generation with pixelcnn decoders},
  author={Oord, Aaron van den and Kalchbrenner, Nal and Vinyals, Oriol and Espeholt, Lasse and Graves, Alex and Kavukcuoglu, Koray},
  journal={arXiv preprint arXiv:1606.05328},
  year={2016}
}
Owner
Christoph Heindl
I am a scientist at PROFACTOR/JKU working at the interface between computer vision, robotics and deep learning.
Christoph Heindl
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021