This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

Overview

GHCF

This is our implementation of the paper:

Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2021. Graph Heterogeneous Multi-Relational Recommendation. In AAAI'21.

Please cite our AAAI'21 paper if you use our codes. Thanks!

@inproceedings{chen2021graph,
  title={Graph Heterogeneous Multi-Relational Recommendation},
  author={Chen, Chong and Ma, Weizhi and Zhang, Min and Wang, Zhaowei and He, Xiuqiang and Wang, Chenyang and Liu, Yiqun and Ma, Shaoping},
  booktitle={Proceedings of AAAI},
  year={2021},
}

Example to run the codes

Train and evaluate our model:

python GHCF.py

Reproducibility

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Suggestions for parameters

Several important parameters need to be tuned for different datasets, which are:

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Specifically, we suggest to tune "wid" among [0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5]. It's also acceptable to simply make the three weights the same, e.g., self.weight = [0.1, 0.1, 0.1] or self.weight = [0.01, 0.01, 0.01]. Generally, this parameter is related to the sparsity of dataset. If the dataset is more sparse, then a small value of negative_weight may lead to a better performance.

The coefficient parameter determines the importance of different tasks in multi-task learning. In our datasets, there are three loss coefficients λ 1 , λ 2 , and λ 3 . As λ 1 + λ 2 + λ 3 = 1, when λ 1 and λ 2 are given, the value of λ 3 is determined. We suggest to tune the three coefficients in [0, 1/6, 2/6, 3/6, 4/6, 5/6, 1].

Owner
Chong Chen
Tsinghua University
Chong Chen
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
Handling Information Loss of Graph Neural Networks for Session-based Recommendation

LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro

Tianwen CHEN 62 Dec 03, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
Graph Neural Network based Social Recommendation Model. SIGIR2019.

Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif

PeijieSun 144 Dec 29, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022