(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

Related tags

Computer VisionBRNet
Overview

BRNet

fig_overview-c2

Introduction

This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds, CVPR 2021.

Authors: Bowen Cheng, Lu Sheng*, Shaoshuai Shi, Ming Yang, Dong Xu (*corresponding author)

[arxiv]

In this repository, we reimplement BRNet based on mmdetection3d for easier usage.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{cheng2021brnet,
  title={Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds},
  author={Cheng, Bowen and Sheng, Lu and Shi, Shaoshuai and Yang, Ming and Xu, Dong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Installation

This repo is built based on mmdetection3d (V0.11.0), please follow the getting_started.md for installation.

The code is tested under the following environment:

  • Ubuntu 16.04 LTS
  • Python 3.7.10
  • Pytorch 1.5.0
  • CUDA 10.1
  • GCC 7.3

Datasets

ScanNet

Please follow the instruction here to prepare ScanNet Data.

SUN RGB-D

Please follow the instruction here to prepare SUN RGB-D Data.

Download Trained Models

We provide the trained models of ScanNet and SUN RGB-D with per-class performances.

ScanNet V2 AP_0.25 AR_0.25 AP_0.50 AR_0.50
cabinet 0.4898 0.7634 0.2800 0.5349
bed 0.8849 0.9506 0.7915 0.8642
chair 0.9149 0.9357 0.8354 0.8604
sofa 0.9049 0.9794 0.8027 0.9278
table 0.6802 0.8486 0.6146 0.7600
door 0.5955 0.7430 0.3721 0.5418
window 0.4814 0.7092 0.2405 0.4078
bookshelf 0.5876 0.8701 0.5032 0.7532
picture 0.1716 0.3243 0.0687 0.1396
counter 0.6085 0.8846 0.3545 0.5385
desk 0.7538 0.9528 0.5481 0.7874
curtain 0.6275 0.7910 0.4126 0.5224
refrigerator 0.5467 0.9474 0.4882 0.8070
showercurtrain 0.7349 0.9643 0.5189 0.6786
toilet 0.9896 1.0000 0.9227 0.9310
sink 0.5901 0.6735 0.3521 0.4490
bathtub 0.8605 0.9355 0.8565 0.9032
garbagebin 0.4726 0.7151 0.3169 0.5170
Overall 0.6608 0.8327 0.5155 0.6624
SUN RGB-D AP_0.25 AR_0.25 AP_0.50 AR_0.50
bed 0.8633 0.9553 0.6544 0.7592
table 0.5136 0.8552 0.2981 0.5268
sofa 0.6754 0.8931 0.5830 0.7193
chair 0.7864 0.8723 0.6301 0.7137
toilet 0.8699 0.9793 0.7125 0.8345
desk 0.2929 0.8082 0.1134 0.4017
dresser 0.3237 0.7615 0.2058 0.4954
night_stand 0.5933 0.8627 0.4490 0.6588
bookshelf 0.3394 0.7199 0.1574 0.3652
bathtub 0.7505 0.8776 0.5383 0.6531
Overall 0.6008 0.8585 0.4342 0.6128

Note: Due to the detection results are unstable and fluctuate within 1~2 mAP points, the results here are slightly different from those in the paper.

Training

For ScanNet V2, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_scannet-3d-18class.py --seed 42

For SUN RGB-D, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_sunrgbd-3d-10class.py --seed 42

Demo

To test a 3D detector on point cloud data, please refer to Single modality demo and Point cloud demo in MMDetection3D docs.

Here, we provide a demo on SUN RGB-D dataset.

CUDA_VISIBLE_DEVICES=0 python demo/pcd_demo.py sunrgbd_000094.bin demo/brnet_8x1_sunrgbd-3d-10class.py checkpoints/brnet_8x1_sunrgbd-3d-10class_trained.pth

Visualization results

ScanNet

SUN RGB-D

Acknowledgments

Our code is heavily based on mmdetection3d. Thanks mmdetection3d Development Team for their awesome codebase.

CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
Semantic-based Patch Detection for Binary Programs

PMatch Semantic-based Patch Detection for Binary Programs Requirement tensorflow-gpu 1.13.1 numpy 1.16.2 scikit-learn 0.20.3 ssdeep 3.4 Usage tar -xvz

Mr.Curiosity 3 Sep 02, 2022
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

PyTorch implementation of Learning by Aligning (ICCV 2021) This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infr

CV Lab @ Yonsei University 30 Nov 05, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE

EAST_ICPR: EAST for ICPR MTWI 2018 CHALLENGE Introduction This is a repository forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE. Origin Reposi

Haozheng Li 157 Aug 23, 2022
A general list of resources to image text localization and recognition 场景文本位置感知与识别的论文资源与实现合集 シーンテキストの位置認識と識別のための論文リソースの要約

Scene Text Localization & Recognition Resources Read this institute-wise: English, 简体中文. Read this year-wise: English, 简体中文. Tags: [STL] (Scene Text L

Karl Lok (Zhaokai Luo) 901 Dec 11, 2022
Character Segmentation using TensorFlow

Character Segmentation Segment characters and spaces in one text line,from this paper Chinese English mixed Character Segmentation as Semantic Segment

26 Aug 25, 2022
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
STEFANN: Scene Text Editor using Font Adaptive Neural Network

STEFANN: Scene Text Editor using Font Adaptive Neural Network @ The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Prasun Roy 208 Dec 11, 2022
Steve Tu 71 Dec 30, 2022
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021
Primary QPDF source code and documentation

QPDF QPDF is a command-line tool and C++ library that performs content-preserving transformations on PDF files. It supports linearization, encryption,

QPDF 2.2k Jan 04, 2023
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
learn how to use Gesture Control to change the volume of a computer

Volume-Control-using-gesture In this project we are going to learn how to use Gesture Control to change the volume of a computer. We first look into h

Diwas Pandey 49 Sep 22, 2022