HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

Overview

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.
中文介绍

Features

  • Non-intrusive. Your iOS project does not need to be modified
  • All commands support real device and simulator
  • All commands support Objective-C and Swift project
  • Some commands provide interactive UI within the APP

Requirements

  • Xcode 12.3
  • 64-bit simulator or real device, iOS 9.0+
  • Debug configuration (or Optimization Level set [-O0]/[-Onone])

Installation

  1. Download all the files. I recommend cloning the repository.
  2. Open up (or create) ~/.lldbinit file, and append the following lines to the end of the file:
command script import /path/to/HMLLDB.py

For example, the command in my computer:
command script import /Users/pal/Desktop/gitProjects/HMLLDB/commands/HMLLDB.py

  1. Restart Xcode, run your own iOS project, click Pause program execution to enter the LLDB debugging mode, enter the command help, if you see the commands described below, the installation is successful.

Commands

Command Description
deletefile Delete the specified file in the sandbox
pbundlepath Print the path of the main bundle
phomedirectory Print the path of the home directory("~")
fclass Find the class containing the input name(Case insensitive)
fsubclass Find the subclass of the input
fsuperclass Find the superclass of the input
fmethod Find the specified method in the method list, you can also find the method list of the specified class
methods Execute [inputClass _methodDescription] or [inputClass _shortMethodDescription]
properties Execute [inputClass _propertyDescription]
ivars Execute [instance _ivarDescription]
plifecycle Print life cycle of UIViewController
redirect Redirect stdout/stderr
push Find UINavigationController in keyWindow then push a specified UIViewController
showhud Display the debug HUD on the key window, it is showing the memory usage, CPU utilization and FPS of the main thread
sandbox Presenting a sandbox browser that can share and delete files
inspect Inspect UIView
environment Show diagnostic environment.
...

All commands in the table can use help <command> to view the syntax and examples. For example, the output of help fmethod:

(lldb) help fmethod
     Find the method.  Expects 'raw' input (see 'help raw-input'.)

Syntax: fmethod

    Syntax:
        fmethod <methodName>  (Case insensitive.)
        fmethod [--class] <className>

    Options:
        --class/-c; Find all method in the class

    Examples:
        (lldb) fmethod viewdid
        (lldb) fmethod viewDidLayoutSubviews
        (lldb) fmethod -c UITableViewController

    This command is implemented in HMClassInfoCommands.py

Example

Some examples use the demo in the Kingfisher project.
It is recommended to click Pause program execution to enter the LLDB debugging mode to execute commands, instead of executing commands by hitting breakpoints.

deletefile

It is recommended to re-run the project after executing the command, because some data is still in the memory.

# Delete all file in the sandbox
(lldb) deletefile -a

# Delete the "~/Documents" directory
(lldb) deletefile -d

# Delete the "~/Library" directory
(lldb) deletefile -l

# Delete the "~/tmp" directory
(lldb) deletefile -t

# Delete the "~/Library/Caches" directory
(lldb) deletefile -c

# Delete the "~Library/Preferences" directory
(lldb) deletefile -p

# Delete the specified file or directory
(lldb) deletefile -f path/to/fileOrDirectory

pbundlepath & phomedirectory

# Print the path of the main bundle
(lldb) pbundlepath
[HMLLDB] /Users/pal/Library/Developer/CoreSimulator/Devices/D90D74C6-DBDF-4976-8BEF-E7BA549F8A89/data/Containers/Bundle/Application/84AE808C-6703-488D-86A2-C90004434D3A/Kingfisher-Demo.app

# Print the path of the home directory
(lldb) phomedirectory
[HMLLDB] /Users/pal/Library/Developer/CoreSimulator/Devices/D90D74C6-DBDF-4976-8BEF-E7BA549F8A89/data/Containers/Data/Application/3F3DF0CD-7B57-4E69-9F15-EB4CCA7C4DD8

# If it is running on the simulator, you can add the -o option to open path with Finder
(lldb) pbundlepath -o
(lldb) phomedirectory -o

fclass & fsubclass & fsuperclass & fmethod

These commands are optimized for Swift, and the namespace can be omitted when entering the Swift class.

fclass: Find all class names that contain the specified string.

(lldb) fclass NormalLoadingViewController
[HMLLDB] Waiting...
[HMLLDB] Count: 1 
Kingfisher_Demo.NormalLoadingViewController (0x102148fa8)

# Case insensitive
(lldb) fclass Kingfisher_Demo.im
[HMLLDB] Waiting...
[HMLLDB] Count: 2 
Kingfisher_Demo.ImageDataProviderCollectionViewController (0x102149a18)
Kingfisher_Demo.ImageCollectionViewCell (0x1021498e8)

fsubclass: Find all subclasses of a class.

(lldb) fsubclass UICollectionViewController
[HMLLDB] Waiting...
[HMLLDB] Subclass count: 10 
Kingfisher_Demo.InfinityCollectionViewController
Kingfisher_Demo.HighResolutionCollectionViewController
...

fsuperclass: Find the super class of a class.

(lldb) fsuperclass UIButton
[HMLLDB] UIButton : UIControl : UIView : UIResponder : NSObject

(lldb) fsuperclass KingfisherManager
[HMLLDB] Kingfisher.KingfisherManager : Swift._SwiftObject

fmethod: Find the specified method in the method list, you can also find the method list of the specified class.

# Find the specified method in the method list. Case insensitive.
(lldb) fmethod viewdidload
[HMLLDB] Waiting...
[HMLLDB] Methods count: 158 
(-) playbackControlsViewDidLoad:
	Type encoding:[email protected]:[email protected]
	Class:AVPlaybackControlsController
(-) turboModePlaybackControlsPlaceholderViewDidLoad:
	Type encoding:[email protected]:[email protected]
	Class:AVPlaybackControlsController
(-) viewDidLoad
	Type encoding:[email protected]:8
	Class:AVNewsWidgetPlayerBehaviorContext
...

# Option -c: Find the method list of the specified class. Case sensitive.
(lldb) fmethod -c ImageCache
[HMLLDB] Waiting...
[HMLLDB] Class: Kingfisher.ImageCache (0x10264c6f8)
Instance methods count: 3. Class method count: 0.
(-) cleanExpiredDiskCache
	Type encoding:[email protected]:8
(-) backgroundCleanExpiredDiskCache
	Type encoding:[email protected]:8
(-) clearMemoryCache
	Type encoding:[email protected]:8

methods & properties & ivars

methods: Execute [inputClass _methodDescription] or [inputClass _shortMethodDescription] properties: Execute [inputClass _propertyDescription] ivars: Execute [instance _ivarDescription]

These commands are optimized for Swift, and the namespace can be omitted when entering the Swift class.

# Syntax
methods [--short] <className/classInstance>
properties <className/classInstance>
ivars <Instance>

(lldb) methods NormalLoadingViewController
[HMLLDB] <Kingfisher_Demo.NormalLoadingViewController: 0x10d55ffa8>:
in Kingfisher_Demo.NormalLoadingViewController:
	Instance Methods:
		- (id) collectionView:(id)arg1 cellForItemAtIndexPath:(id)arg2; (0x10d523f30)
		- (long) collectionView:(id)arg1 numberOfItemsInSection:(long)arg2; (0x10d522a20)
		- (void) collectionView:(id)arg1 willDisplayCell:(id)arg2 forItemAtIndexPath:(id)arg3; (0x10d523af0)
		- (void) collectionView:(id)arg1 didEndDisplayingCell:(id)arg2 forItemAtIndexPath:(id)arg3; (0x10d522cb0)
		- (id) initWithCoder:(id)arg1; (0x10d522960)
...

# These commands can only be used for subclasses of NSObject
(lldb) methods KingfisherManager
[HMLLDB] KingfisherManager is not a subclass of NSObject

plifecycle

Used to print the life cycle of UIViewController.
In a non-intrusive way, and Xcode can set the console font color to make it clearer. It has become one of my favorite commands.

Usage:

  1. Create a Symbolic Breakpoint, and then add the method to be printed in the Symbol line.(e.g. -[UIViewController viewDidAppear:])
  2. Add a Action(Debugger Command), enter the plifecycle command
  3. Check the option: Automatically continue after evaluating actions

I usually use the -i option to ignore some system-generated UIViewController. img1

I often Enable viewDidAppear: and dealloc methods, and the other methods are set to Disable and started on demand, as shown below: img2

Output in Xcode: img3

It should be noted that there are two problems with this command.

  1. Cause UIViewController switching lag.
  2. The following warning may be triggered when starting the APP. You need to click Continue program execution in Xcode to let the APP continue to run.
Warning: hit breakpoint while running function, skipping commands and conditions to prevent recursion.

BTW, the source code provides other ways to use LLDB to print the life cycle.

redirect

Redirect stdout/stder.

# You can redirect the output of Xcode to Terminal if you use the simulator
# Open the terminal, enter the "tty" command, you can get the path: /dev/ttys000
(lldb) redirect both /dev/ttys000
[HMLLDB] redirect stdout successful
[HMLLDB] redirect stderr successful

push

Find UINavigationController in keyWindow then push a specified UIViewController.
Notice: push MyViewController needs to execute [[MyViewController alloc] init] first. If the initializer of the class requires parameters, or the class needs to pass parameters after initialization, this command may cause errors.
The GIF demo didn't use Kingfisher because the UIViewController in the demo depends on the storyboard.
img4

showhud

Display the debug HUD on the keyWindow, it is showing the memory usage, CPU utilization and FPS of the main thread. img5

Tapping the debug HUD will present a new view controller, and its function will be introduced later. img6

sandbox

Presenting a sandbox browser that can share and delete files.
It takes a few seconds to call the command for the first time. img7

inspect

Inspect UIView of the current page.
img8

environment

Show diagnostic environment.
You can see that one of items is [Git commit hash], which is one of the reasons why clone repository is recommended.

(lldb) environment
[HMLLDB] [Python version] 3.8.2 (default, Nov  4 2020, 21:23:28) 
		[Clang 12.0.0 (clang-1200.0.32.28)]
[HMLLDB] [LLDB version] lldb-1200.0.44.2
		Apple Swift version 5.3.2 (swiftlang-1200.0.45 clang-1200.0.32.28)
[HMLLDB] [Target triple] x86_64h-apple-ios-simulator
[HMLLDB] [Git commit hash] 088f654cb158ffb16019b2deca5dce36256837ad
[HMLLDB] [Optimized] False: 28  True: 0
[HMLLDB] [Xcode version] 1230
[HMLLDB] [Xcode build version] 12C33
[HMLLDB] [Model identifier] x86_64
[HMLLDB] [System version] iOS 13.0

If an error occurs

Just-in-time compilation via LLDB is not stable. If an error occurs, please check in order according to the following steps.

  1. pull the latest code. Check the Xcode version, HMLLDB generally only adapts to the latest Xcode version.
  2. Open the ~/.lldbinit file and make sure to import the HMLLDB.py at the end of the file so that its commands are not overwritten.
  3. After launching the APP, click Pause program execution to enter the LLDB debugging mode to execute commands, instead of executing commands by hitting breakpoints. (In general, you can execute commands by hitting breakpoints)
  4. Restart Xcode can solve most problems.
  5. Restart the computer.
  6. After completing the above steps, the command still fails. Please copy the error and post it to Issue, and execute the environment command, its output should also be posted to Issue.

License

HMLLDB is released under the MIT license. See LICENSE for details.

Owner
mao2020
iOS Developer
mao2020
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022