SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

Overview

SimpleChinese2

SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

声明

本项目是为方便个人工作所创建的,仅有部分代码原创。包括分词、词云在内的诸多功能来自于其他项目,并非本人所写,如遇问题,请至原项目链接下提问,谢谢!

安装

pip install -U simplechinese==0.2.8

如从 git 上 clone,需要从以下地址下载词向量文件:

https://drive.google.com/file/d/1ltyiTHZk8kIBYQGbZS9GoO_DwDOEWnL9/view?usp=sharing

并拷贝至"./simplechinese/data/"文件夹下

使用方法

import simplechinese as sc

1. 文字预处理

>> print(sc.only_digits(x)) # 仅保留数字 01234 >>> print(sc.only_zh(x)) # 仅保留中文 测试测试测试测试 >>> print(sc.only_en(x)) # 仅保留英文 TestING >>> print(sc.remove_space(x)) # 去除空格 测试测试,TestING;¥%&01234测试测试 >>> print(sc.remove_digits(x)) # 去除数字 测试测试,TestING ;¥%& 测试测试 >>> print(sc.remove_zh(x)) # 去除中文 ,TestING ;¥%& 01234 >>> print(sc.remove_en(x)) # 去除英文 测试测试, ;¥%& 01234测试测试 >>> print(sc.remove_punctuations(x)) # 去除标点符号 测试测试TestING 01234测试测试 >>> print(sc.toLower(x)) # 修改为全小写字母 测试测试,testing ;¥%& 01234测试测试 >>> print(sc.toUpper(x)) # 修改为全大写字母 测试测试,TESTING ;¥%& 01234测试测试 >>> x = "测试,TestING:12345@#【】+=-()。." >>> print(sc.punc_norm(x)) # 将中文标点符号转换成英文标点符号 测试,TestING:12345@#[]+=-().. >>> # y = fillna(df) # 将pandas.DataFrame中的N/A单元格填充为长度为0的str ">
>>> x = "测试测试,TestING    ;¥%& 01234测试测试"

>>> print(sc.only_digits(x))         # 仅保留数字
01234

>>> print(sc.only_zh(x))             # 仅保留中文
测试测试测试测试

>>> print(sc.only_en(x))             # 仅保留英文
TestING

>>> print(sc.remove_space(x))        # 去除空格
测试测试,TestING;¥%&01234测试测试

>>> print(sc.remove_digits(x))       # 去除数字
测试测试,TestING    ;¥%& 测试测试

>>> print(sc.remove_zh(x))           # 去除中文
,TestING    ;¥%& 01234

>>> print(sc.remove_en(x))           # 去除英文
测试测试,    ;¥%& 01234测试测试

>>> print(sc.remove_punctuations(x)) # 去除标点符号
测试测试TestING     01234测试测试

>>> print(sc.toLower(x))             # 修改为全小写字母
测试测试,testing    ;¥%& 01234测试测试

>>> print(sc.toUpper(x))             # 修改为全大写字母
测试测试,TESTING    ;¥%& 01234测试测试

>>> x = "测试,TestING:12345@#【】+=-()。."
>>> print(sc.punc_norm(x))           # 将中文标点符号转换成英文标点符号
测试,TestING:12345@#[]+=-()..

>>> # y = fillna(df) # 将pandas.DataFrame中的N/A单元格填充为长度为0的str

2. 基础NLP信息提取功能

该部分中,分词功能使用 jieba 实现,源码请参考:https://github.com/fxsjy/jieba

同/近义词查找功能复用了 synonyms 中的词向量数据文件,源码请参考:https://github.com/chatopera/Synonyms 但有所改动,改动如下

  1. 由于 pip 上传文件限制,synonyms 需要用户在完成 pip 安装后再下载词向量文件,国内下载需要设置镜像地址或使用特殊手段,有所不便。因此此处将词向量用 float16 表示,并使用 pca 降维至 64 维。总体效果差别不大,如果在意,请直接安装 synonyms 处理同/近义词查找任务。

  2. 原项目通过构建 KDTree 实现快速查找,但比较相似度是使用 cosine similarity,而 KDTree (sklearn) 本身不支持通过 cosine similarity 构建。因此原项目使用欧式距离构建树,导致输出结果有部分顺序混乱。为修复该问题,本项目将词向量归一化后再构建 KDTree,使得向量间的 cosine similarity 与欧式距离(即割线距离)正相关。具体推导可参考下文:https://stackoverflow.com/questions/34144632/using-cosine-distance-with-scikit-learn-kneighborsclassifier

  3. 原项目中未设置缓存上限,本项目中仅保留最近10000次查找记录。

x = "今天是我参加工作的第1天,我花了23.33元买了写零食犒劳一下自己。"
print(sc.extract_nums(x))              # 提取数字信息
[1.0, 23.33]

# mode: 0: No single character words. The words may be overlapped.
#       1: Have single character words. The words may be overlapped.
#       2: No single character words. The words are not overlapped.
#       3: Have single character words. The words are not overlapped.
#       4: Only single characters.
print(sc.extract_words(x, mode=0))      # 分词
['今天', '参加', '工作', '我花', '23.33', '零食', '犒劳', '一下', '自己']

a = "做人真的好难"
b = "做人实在太难了"
print(sc.string_distance(a,b))  # 编辑距离
0.46153846153846156

x = "种族歧视"
print(sc.find_synonyms(x, n=3))  # 同/近义词
[('种族歧视', 1.0), ('种族主义', 0.84619140625), ('歧视', 0.76416015625)]

3. 繁体简体转换

该部分使用 chinese_converter 实现,源码请参考:https://github.com/zachary822/chinese-converter

>> print(sc.to_traditional(x)) # 转换为繁体 烏龜測試123 >>> x = "烏龜測試123" >>> print(sc.to_simplified(x)) # 转换为简体 乌龟测试123 ">
>>> x = "乌龟测试123"
>>> print(sc.to_traditional(x))  # 转换为繁体
烏龜測試123

>>> x = "烏龜測試123"
>>> print(sc.to_simplified(x))   # 转换为简体
乌龟测试123

4. 特征提取和向量化

5. 词云和可视化

TODO:

  1. 句子向量化及句子相似度
  2. 其他特征提取相关工具
Owner
Ming
惊了
Ming
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports

Zhe Gan 109 Dec 31, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

Hyunwoong Ko 72 Dec 07, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
Code for ACL 2020 paper "Rigid Formats Controlled Text Generation"

SongNet SongNet: SongCi + Song (Lyrics) + Sonnet + etc. @inproceedings{li-etal-2020-rigid, title = "Rigid Formats Controlled Text Generation",

Piji Li 212 Dec 17, 2022
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022