Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Overview

This repo contains the implementation of our paper:

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Paper Link

Replication

Python environment

pip install -e . # under DSLP directory
pip install tensorflow tensorboard sacremoses nltk Ninja omegaconf
pip install 'fuzzywuzzy[speedup]'
pip install hydra-core==1.0.6
pip install sacrebleu==1.5.1
pip install git+https://github.com/dugu9sword/lunanlp.git
git clone --recursive https://github.com/parlance/ctcdecode.git
cd ctcdecode && pip install .

Dataset

We downloaded the distilled data from FairSeq

Preprocessed by

TEXT=wmt14_ende_distill
python3 fairseq_cli/preprocess.py --source-lang en --target-lang de \
   --trainpref $TEXT/train.en-de --validpref $TEXT/valid.en-de --testpref $TEXT/test.en-de \
   --destdir data-bin/wmt14.en-de_kd --workers 40 --joined-dictionary

Or you can download all the binarized files here.

Hyperparameters

EN<->RO EN<->DE
--validate-interval-updates 300 500
number of tokens per batch 32K 128K
--dropout 0.3 0.1

Note:

  1. We found that label smoothing for CTC-based models are not useful (at least not with our implementation), it is suggested to keep --label-smoothing as 0 for them.
  2. Dropout rate plays a significant role for GLAT, CMLM, and the Vanilla NAT. On WMT'14 EN->De, for example, the Vanilla NAT with dropout 0.1 reaches 21.18 BLEU; but only gives 19.68 BLEU with dropout 0.3.

Training:

We provide the scripts for replicating the results on WMT'14 EN->DE task. For other tasks, you need to adapt the binary path, --source-lang, --target-lang, and some other hyperparameters accordingly.

GLAT with DSLP

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_glat --criterion glat_loss --arch glat_sd --noise full_mask \ 
   --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 --glat-mode glat \ 
   --length-loss-factor 0.1 --pred-length-offset 

CMLM with DSLP

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch glat_sd --noise full_mask \ 
   --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 \
   --length-loss-factor 0.1 --pred-length-offset 

Vanilla NAT with DSLP

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_sd --noise full_mask \ 
   --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 \
   --length-loss-factor 0.1 --pred-length-offset 

Vanilla NAT with DSLP and Mixed Training:

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_sd --noise full_mask \ 
   --concat-yhat --concat-dropout 0.0  --label-smoothing 0.1 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192  --ss-ratio 0.3 --fixed-ss-ratio --masked-loss \ 
   --length-loss-factor 0.1 --pred-length-offset 

CTC with DSLP:

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_ctc_sd --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  --label-smoothing 0.0 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 

CTC with DSLP and Mixed Training:

python3 train.py data-bin/wmt14.en-de_kd --source-lang en --target-lang de  --save-dir checkpoints  --eval-tokenized-bleu \
   --keep-interval-updates 5 --save-interval-updates 500 --validate-interval-updates 500 --maximize-best-checkpoint-metric \
   --eval-bleu-remove-bpe --eval-bleu-print-samples --best-checkpoint-metric bleu --log-format simple --log-interval 100 \
   --eval-bleu --eval-bleu-detok space --keep-last-epochs 5 --keep-best-checkpoints 5  --fixed-validation-seed 7 --ddp-backend=no_c10d \
   --share-all-embeddings --decoder-learned-pos --encoder-learned-pos  --optimizer adam --adam-betas "(0.9,0.98)" --lr 0.0005 \ 
   --lr-scheduler inverse_sqrt --stop-min-lr 1e-09 --warmup-updates 10000 --warmup-init-lr 1e-07 --apply-bert-init --weight-decay 0.01 \
   --fp16 --clip-norm 2.0 --max-update 300000  --task translation_lev --criterion nat_loss --arch nat_ctc_sd_ss --noise full_mask \ 
   --src-upsample-scale 2 --use-ctc-decoder --ctc-beam-size 1  --concat-yhat --concat-dropout 0.0  --label-smoothing 0.0 \ 
   --activation-fn gelu --dropout 0.1  --max-tokens 8192 --ss-ratio 0.3 --fixed-ss-ratio

Evaluation

Average the last best 5 checkpoints with scripts/average_checkpoints.py, our results are based on either the best checkpoint or the averaged checkpoint, depending on their valid set BLEU.

fairseq-generate data-bin/wmt14.en-de_kd  --path PATH_TO_A_CHECKPOINT \
    --gen-subset test --task translation_lev --iter-decode-max-iter 0 \
    --iter-decode-eos-penalty 0 --beam 1 --remove-bpe --print-step --batch-size 100

Note: 1) Add --plain-ctc --model-overrides '{"ctc_beam_size": 1, "plain_ctc": True}' if it is CTC based; 2) Change the task to translation_glat if it is GLAT based.

Output

We in addition provide the output of CTC w/ DSLP, CTC w/ DSLP & Mixed Training, Vanilla NAT w/ DSLP, Vanilla NAT w/ DSLP with Mixed Training, GLAT w/ DSLP, and CMLM w/ DSLP for review purpose.

Model Reference Hypothesis
CTC w/ DSLP ref hyp
CTC w/ DSLP & Mixed Training ref hyp
Vanilla NAT w/ DSLP ref hyp
Vanilla NAT w/ DSLP & Mixed Training ref hyp
GLAT w/ DSLP ref hyp
CMLM w/ DSLP ref hyp

Note: The output is on WMT'14 EN-DE. The references are paired with hypotheses for each model.

Training Efficiency

We show the training efficiency of our DSLP model based on vanilla NAT model. Specifically, we compared the BLUE socres of vanilla NAT and vanilla NAT with DSLP & Mixed Training on the same traning time (in hours).

As we observed, our DSLP model achieves much higher BLUE scores shortly after the training started (~3 hours). It shows that our DSLP is much more efficient in training, as our model ahieves higher BLUE scores with the same amount of training cost.

Efficiency

We run the experiments with 8 Tesla V100 GPUs. The batch size is 128K tokens, and each model is trained with 300K updates.

Owner
Chenyang Huang
Stay hungry, stay foolish
Chenyang Huang
NLP, Machine learning

Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members

Harshith VH 6 Jan 12, 2022
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las TecnologΓ­as del Lenguaje" (Plan-TL).

Spanish Language Models πŸ’ƒπŸ» Corpora πŸ“ƒ Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models πŸ€– RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Glow-Speak glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end. Installation git clone https://g

Rhasspy 8 Dec 25, 2022
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
πŸš€ RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

AI2 11.4k Jan 01, 2023
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo πŸŽ‰ 1T or bust my dudes πŸŽ‰ An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

πŸ€— Contributing to OpenSpeech πŸ€— OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
COVID-19 Chatbot with Rasa 2.0: open source conversational AI

COVID-19 chatbot implementation with Rasa open source 2.0, conversational AI framework.

Aazim Parwaz 1 Dec 23, 2022