Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

Overview

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data

arXiv License: MIT

Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl

| Project Page | Paper | Poster | Slides | Video |

1

This repository includes the official and maintained PyTorch implementation of the paper OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data.

Abstract

Convolutional neural networks (CNNs) are the current state-of-the-art meta-algorithm for volumetric segmentation of medical data, for example, to localize COVID-19 infected tissue on computer tomography scans or the detection of tumour volumes in magnetic resonance imaging. A key limitation of 3D CNNs on voxelised data is that the memory consumption grows cubically with the training data resolution. Occupancy networks (O-Nets) are an alternative for which the data is represented continuously in a function space and 3D shapes are learned as a continuous decision boundary. While O-Nets are significantly more memory efficient than 3D CNNs, they are limited to simple shapes, are relatively slow at inference, and have not yet been adapted for 3D semantic segmentation of medical data. Here, we propose Occupancy Networks for Semantic Segmentation (OSS-Nets) to accurately and memory-efficiently segment 3D medical data. We build upon the original O-Net with modifications for increased expressiveness leading to improved segmentation performance comparable to 3D CNNs, as well as modifications for faster inference. We leverage local observations to represent complex shapes and prior encoder predictions to expedite inference. We showcase OSS-Net's performance on 3D brain tumour and liver segmentation against a function space baseline (O-Net), a performance baseline (3D residual U-Net), and an efficiency baseline (2D residual U-Net). OSS-Net yields segmentation results similar to the performance baseline and superior to the function space and efficiency baselines. In terms of memory efficiency, OSS-Net consumes comparable amounts of memory as the function space baseline, somewhat more memory than the efficiency baseline and significantly less than the performance baseline. As such, OSS-Net enables memory-efficient and accurate 3D semantic segmentation that can scale to high resolutions.

If you find this research useful in your work, please cite our paper:

@inproceedings{Reich2021,
        title={{OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data}},
        author={Reich, Christoph and Prangemeier, Tim and Cetin, {\"O}zdemir and Koeppl, Heinz},
        booktitle={British Machine Vision Conference},
        year={2021},
        organization={British Machine Vision Association},
}

Dependencies

All required Python packages can be installed by:

pip install -r requirements.txt

To install the official implementation of the Padé Activation Unit [1] (taken from the official repository) run:

cd pade_activation_unit/cuda
python setup.py build install

The code is tested with PyTorch 1.8.1 and CUDA 11.1 on Linux with Python 3.8.5! Using other PyTorch and CUDA versions newer than PyTorch 1.7.0 and CUDA 10.1 should also be possible.

Data

The BraTS 2020 dataset can be downloaded here and the LiTS dataset can be downloaded here. Please note, that accounts are required to login and downlaod the data on both websites.

The used training and validation split of the BraTS 2020 dataset is available here.

For generating the border maps, necessary if border based sampling is utilized, please use the generate_borders_bra_ts_2020.py and generate_borders_lits.py script.

Trained Models

Table 1. Segmentation results of trained networks. Weights are generally available here and specific models are linked below.

Model Dice () BraTS 2020 IoU () BraTS 2020 Dice () LiTS IoU () LiTS
O-Net [2] 0.7016 0.5615 0.6506 0.4842 - -
OSS-Net A 0.8592 0.7644 0.7127 0.5579 weights BraTS weights LiTS
OSS-Net B 0.8541 0.7572 0.7585 0.6154 weights BraTS weights LiTS
OSS-Net C 0.8842 0.7991 0.7616 0.6201 weights BraTS weights LiTS
OSS-Net D 0.8774 0.7876 0.7566 0.6150 weights BraTS weights LiTS

Usage

Training

To reproduce the results presented in Table 1, we provide multiple sh scripts, which can be found in the scripts folder. Please change the dataset path and CUDA devices according to your system.

To perform training runs with different settings use the command line arguments of the train_oss_net.py file. The train_oss_net.py takes the following command line arguments:

Argument Default value Info
--train False Binary flag. If set training will be performed.
--test False Binary flag. If set testing will be performed.
--cuda_devices "0, 1" String of cuda device indexes to be used. Indexes must be separated by a comma.
--cpu False Binary flag. If set all operations are performed on the CPU. (not recommended)
--epochs 50 Number of epochs to perform while training.
--batch_size 8 Number of epochs to perform while training.
--training_samples 2 ** 14 Number of coordinates to be samples during training.
--load_model "" Path to model to be loaded.
--segmentation_loss_factor 0.1 Auxiliary segmentation loss factor to be utilized.
--network_config "" Type of network configuration to be utilized (see).
--dataset "BraTS" Dataset to be utilized. ("BraTS" or "LITS")
--dataset_path "BraTS2020" Path to dataset.
--uniform_sampling False Binary flag. If set locations are sampled uniformly during training.

Please note that the naming of the different OSS-Net variants differs in the code between the paper and Table 1.

Inference

To perform inference, use the inference_oss_net.py script. The script takes the following command line arguments:

Argument Default value Info
--cuda_devices "0, 1" String of cuda device indexes to be used. Indexes must be separated by a comma.
--cpu False Binary flag. If set all operations are performed on the CPU. (not recommended)
--load_model "" Path to model to be loaded.
--network_config "" Type of network configuration to be utilized (see).
--dataset "BraTS" Dataset to be utilized. ("BraTS" or "LITS")
--dataset_path "BraTS2020" Path to dataset.

During inference the predicted occupancy voxel grid, the mesh prediction, and the label as a mesh are saved. The meshes are saved as PyTorch (.pt) files and also as .obj files. The occupancy grid is only saved as a PyTorch file.

Acknowledgements

We thank Marius Memmel and Nicolas Wagner for the insightful discussions, Alexander Christ and Tim Kircher for giving feedback on the first draft, and Markus Baier as well as Bastian Alt for aid with the computational setup.

This work was supported by the Landesoffensive für wissenschaftliche Exzellenz as part of the LOEWE Schwerpunkt CompuGene. H.K. acknowledges support from the European Re- search Council (ERC) with the consolidator grant CONSYN (nr. 773196). O.C. is supported by the Alexander von Humboldt Foundation Philipp Schwartz Initiative.

References

[1] @inproceedings{Molina2020Padé,
        title={{Pad\'{e} Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks}},
        author={Alejandro Molina and Patrick Schramowski and Kristian Kersting},
        booktitle={International Conference on Learning Representations},
        year={2020}
}
[2] @inproceedings{Mescheder2019,
        title={{Occupancy Networks: Learning 3D Reconstruction in Function Space}},
        author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
        booktitle={CVPR},
        pages={4460--4470},
        year={2019}
}
Owner
Christoph Reich
Autonomous systems and electrical engineering student @ Technical University of Darmstadt
Christoph Reich
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022