ICCV2021 - A New Journey from SDRTV to HDRTV.

Related tags

Deep LearningHDRTVNet
Overview

HDRTVNet [Paper Link]

A New Journey from SDRTV to HDRTV

By Xiangyu Chen*, Zhengwen Zhang*, Jimmy S. Ren, Lynhoo Tian, Yu Qiao and Chao Dong

(* indicates equal contribution)

This paper is accepted to ICCV 2021.

Overview

Simplified SDRTV/HDRTV formation pipeline:

Overview of the method:

Getting Started

  1. Dataset
  2. Configuration
  3. How to test
  4. How to train
  5. Metrics
  6. Visualization

Dataset

We conduct a dataset using videos with 4K resolutions under HDR10 standard (10-bit, Rec.2020, PQ) and their counterpart SDR versions from Youtube. The dataset consists of a training set with 1235 image pairs and a test set with 117 image pairs. Please refer to the paper for the details on the processing of the dataset. The dataset can be downloaded from Baidu Netdisk (access code: 6qvu) or OneDrive (access code: HDRTVNet).

We also provide the original Youtube links of these videos, which can be found in this file. Note that we cannot provide the download links since we do not have the copyright to distribute. Please download this dataset only for academic use.

Configuration

Please refer to the requirements. Matlab is also used to process the data, but it is not necessary and can be replaced by OpenCV.

How to test

We provide the pretrained models to test, which can be downloaded from Baidu Netdisk (access code: 2me9) or OneDrive (access code: HDRTVNet). Since our method is casaded of three steps, the results also need to be inferenced step by step.

  • Before testing, it is optional to generate the downsampled inputs of the condition network in advance. Make sure the input_folder and save_LR_folder in ./scripts/generate_mod_LR_bic.m are correct, then run the file using Matlab. After that, matlab-bicubic-downsampled versions of the input SDR images are generated that will be input to the condition network. Note that this step is not necessary, but can reproduce more precise performance.
  • For the first part of AGCM, make sure the paths of dataroot_LQ, dataroot_cond, dataroot_GT and pretrain_model_G in ./codes/options/test/test_AGCM.yml are correct, then run
cd codes
python test.py -opt options/test/test_AGCM.yml
  • Note that if the first step is not preformed, the line of dataroot_cond should be commented. The test results will be saved to ./results/Adaptive_Global_Color_Mapping.
  • For the second part of LE, make sure dataroot_LQ is modified into the path of results obtained by AGCM, then run
python test.py -opt options/test/test_LE.yml
  • Note that results generated by LE can achieve the best quantitative performance. The part of HG is for the completeness of the solution and improving the visual quality forthermore. For testing the last part of HG, make sure dataroot_LQ is modified into the path of results obtained by LE, then run
python test.py -opt options/test/test_HG.yml
  • Note that the results of the each step are 16-bit images that can be converted into HDR10 video.

How to train

  • Prepare the data. Generate the sub-images with specific patch size using ./scripts/extract_subimgs_single.py and generate the down-sampled inputs for the condition network (using the ./scripts/generate_mod_LR_bic.m or any other methods).
  • For AGCM, make sure that the paths and settings in ./options/train/train_AGCM.yml are correct, then run
cd codes
python train.py -opt options/train/train_AGCM.yml
  • For LE, the inputs are generated by the trained AGCM model. The original data should be inferenced through the first step (refer to the last part on how to test AGCM) and then be processed by extracting sub-images. After that, modify the corresponding settings in ./options/train/train_LE.yml and run
python train.py -opt options/train/train_LE.yml
  • For HG, the inputs are also obtained by the last part LE, thus the training data need to be processed by similar operations as the previous two parts. When the data is prepared, it is recommended to pretrain the generator at first by running
python train.py -opt options/train/train_HG_Generator.yml
  • After that, choose a pretrained model and modify the path of pretrained model in ./options/train/train_HG_GAN.yml, then run
python train.py -opt options/train/train_HG_GAN.yml
  • All models and training states are stored in ./experiments.

Metrics

Five metrics are used to evaluate the quantitative performance of different methods, including PSNR, SSIM, SR_SIM, Delta EITP (ITU Rec.2124) and HDR-VDP3. Since the latter three metrics are not very common in recent papers, we provide some reference codes in ./metrics for convenient usage.

Visualization

Since HDR10 is an HDR standard using PQ transfer function for the video, the correct way to visualize the results is to synthesize the image results into a video format and display it on the HDR monitor or TVs that support HDR. The HDR images in our dataset are generated by directly extracting frames from the original HDR10 videos, thus these images consisting of PQ values look relatively dark compared to their true appearances. We provide the reference commands of our extracting frames and synthesizing videos in ./scripts. Please use MediaInfo to check the format and the encoding information of synthesized videos before visualization. If circumstances permit, we strongly recommend to observe the HDR results and the original HDR resources by this way on the HDR dispalyer.

If the HDR displayer is not available, some media players with HDR render can play the HDR video and show a relatively realistic look, such as Potplayer. Note that this is only an approximate alternative, and it still cannot fully restore the appearance of HDR content on HDR monitors.

Citation

If our work is helpful to you, please cite our paper:

@inproceedings{chen2021new,
  title={A New Journey from SDRTV to HDRTV}, 
  author={Chen, Xiangyu and Zhang, Zhengwen and Ren, Jimmy S. and Tian, Lynhoo and Qiao, Yu and Dong, Chao},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}
Owner
XyChen
PhD. Student,Computer Vision
XyChen
wlad 2 Dec 19, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022