Audio Visual Emotion Recognition using TDA

Overview

Audio Visual Emotion Recognition using TDA

RAVDESS database with two datasets analyzed: Video and Audio dataset:

Audio-Dataset: https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio

Video-Dataset: https://zenodo.org/record/1188976#.X7yio2hKjIU

The Final Master project PDF document is available here.

Folder Video_Dataset:

Dataset used is available in this url https://zenodo.org/record/1188976#.X7yio2hKjIU The algorithm works in this order:

  1. delaunay_construction.m: The first step of the algorithm in order to build the Delaunay triangulation in every video associated from dataset, remind that we have videos of 24 people and for each person 60 videos associated to 8 emotions. The first step is to defines the pathdata where it is the dataset address, that it is in format csv with the landmark point of the face. The coordinate of point X is is between position 2:297 and Y from 138:416 return the Delaunay_base, the struct that we will use in the code.

  2. complex_filtration.m: After get the delaunay_construction, we apply complex_filtration(Delaunay). The input is the Delaunay triangulation, in this code we built the complexes using the triangulation, taking the edges which form the squares and used them to form the square in every frame. We are working with 9 frames and this function calls the filtration function. Then, this function the return the complex asociated to each video, and the index position where each 3-cell is formed in the complex

2.1. filtrations.m This function obtains 8 border simplicial complexes filtered, from 4 view directions, 2 by each direction.We applied a set of function in order to get the different complex, as you can see the funcion return Complex X in the direction of axis X, Complex X in direction of Y, Complex XY, Complex YX in diagonal direction and the same complex with the order inverted.

2.2. complex_wtsquare.m In this function we are going to split the complexes which form every cell to see the features which born and died in the same square on the complex.

  1. WORKFLOW.m One time that we have the complexes build, we are going to apply the Incremental Algorithm (Persistence_new) used in this thesis, the Incremental algorithm was implemented in C++ using differente topology libraries which offer this language. Then we get the barcode or persistence diagram associated to each filter complex obtained at begining. In this function we apply also the function (per_entropy) to summarise the information from the persistence diagram

Load each complex and its index and apply:

3.1 complex2matrix.py: converts the complex obtained for the ATR model applied in matricial way as we explained on the thesis(page 50).

3.2 Persistence_new: ATR model defined in C++ to calculate the persisten homology and get the barcode or persistence diagrams associated with each filtration of the complex. The psuedo-code of the algorithm you will find on the thesis.

3.3 create_matrix.m: Built the different matrix based on persistence value to classify.

  1. experiment: the first experiment done based on the entropy values of video, but it sets each filtration compex that we get, then for that we worked with vector of eight elements associated to each filtration. Later this matrix is splitted in training and test set in order to use APP Classificator from Matlab and gets the accuracy.

  2. experiment3: Experiment that construct the matrix with the information of each persisten value associate with one filtration of the complex calculated. Later this matrix is splitted in training and test set in order to use APP Classificator from Matlab and gets the accuracy.

  3. feature24_vector.m: experiment done considering a vector of 24 features for each person. in this experiment we dont get good results.

Folder Audio Dataset:

In this url yo can finde the Audio-Dataset used for this implementation, the formal of the files are in .wav: https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio

Experiment 1

  1. work_flow.py focuses on the first experiment, load data that will be used in the script, and initialize the dataframe to fill.

1.1 test.py using function emotions to get the embedder and duration in seconds of each audio signal. Read the audio and create the time array (timeline), resample the signal, get the optimal parameter delay, apply the emmbedding algorithm

1.2 get_parameters.py function to get the optimal parameter for taken embedding, which contains datDelayInformation for mutual information, false_nearest_neighours for embedding dimension.

1.3 TakensEmbedding: This function returns the Takens embedding of data with a delay into a dimension

1.4 per_entropy.py: Computes the persistence entropy of a set of intervals according to the diagrama obtained.

1.5 get_diagramas.py used to apply Vietoris-Rips filter and get the persisten_entropy values.

  1. machine_learning.py is used to define classification techniques in the set of entropy values. Create training and test splits. Import the KNeighborsClassifier from library. The parameter K is to plot in graph with corresponding error rate for dataset and calculate the mean of error for all the predicted values where K ranges from 1 to 40.

Experment 2

  1. Work_flow2.py: Second experiment, using function emotions_second to obtain the resampled signal, get_diag2 from test.py to calculates the Vietoris-Rips filter.

  2. machine_learning_second: To construct a distance matrix of persistence diagrams (Bottleneck distance). Upload the csv prueba5.csv that contains the label of the emotion associated to each rows of the matrix. Create the fake data matrix: just the indices of the timeseries. Import the KNeighborsClassifier from library. For evaluating the algorithm, confusion matrix, precision, recall and f1 score are the most commonly used. Testing different classifier to see what is the best one. GaussianNB; DecisionTreeClassifier, knn and SVC.

4.1 my_dist: To get the distance bottleneck between diagrams, function that we use to built the matrix of distance, that will be the input of the KNN algorithm.

Classification folder

In this folder, the persistent entropy matrixes and classification experiments using neural networks for video-only and audiovideo datasets are provided.

Owner
Combinatorial Image Analysis research group
Combinatorial Image Analysis research group
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021