Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Overview

Hierarchical Pretraining: Research Repository

This is a research repository for reproducing the results from the project "Self-supervised pretraining improves self-supervised pretraining." You can find the arXiv prepint here: https://arxiv.org/abs/2103.12718

Installation

# repo
git clone [email protected]:cjrd/base-training.git

# setup environment
conda create -n hpt python=3.7 ipython
conda activate hpt

# NOTE: if you are not using CUDA 10.2, you need to change the 10.2 in this file appropriately
# (check CUDA version with e.g. `cat /usr/local/cuda/version.txt`)
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch

# install local submodules
cd OpenSelfSup
pip install -v -e .

Data installation

The data you need will depend on your goals, but generally speaking, download the RESISC-45 dataset to make sure you have everything working correctly.

Pretrained Models

cd OpenSelfSup/data/basetrain_chkpts/
./download-pretrained-models.sh

RESISC-45

RESISC-45 contains 31,500 aerial images, covering 45 scene classes with 700 images in each class.

# cd to the directory where you want the data, $DATA
wget https://people.eecs.berkeley.edu/~cjrd/data/resisc45.tar.gz
tar xf resisc45.tar.gz

# replace/set $DATA and $CODE as appropriate
ln -s $DATA/resisc45 $CODE/OpenSelfSup/data/resisc45/all

Verify Install

Check installation by pretraining using mocov2, extracting the model weights, evaluating the representations, and then viewing the results:

cd OpenSelfSup

# Sanity check: MoCo for 20 epoch on 4 gpus
./tools/dist_train.sh configs/selfsup/moco/r50_v2_resisc_in_basetrain_20ep.py 4

# make some variables so its clear what's happening
CHECKPOINT=work_dirs/selfsup/moco/r50_v2_resisc_in_basetrain_20ep/epoch_20.pth
BACKBONE=work_dirs/selfsup/moco/r50_v2_resisc_in_basetrain_20ep/epoch_20_moco_in_basetrain.pth
# Extract the backbone
python tools/extract_backbone_weights.py ${CHECKPOINT} ${BACKBONE}

# Evaluate the representations
./benchmarks/dist_train_linear.sh configs/benchmarks/linear_classification/resisc45/r50_last.py ${BACKBONE}

# View the results
cd work_dirs
# you may need to install tensorboard
tensorboard --logdir .

Base Training

Right now we assume ImageNet base trained models.

cd OpenSelfSup/data/basetrain_chkpts/
./download-pretrained-models.sh

Pretraining With a New Dataset

We have a handy set of config generators to make pretraining with a new dataset easy and consistent!

FIRST, you will need the image pixel mean/std of your dataset, if you don't have it, you can do:

./compute-dataset-pixel-mean-std.py --data /path/to/image-folder --numworkers 20 --batchsize 256

where image-folder has the structure from ImageFolder in pytorch
class/image-name.jp[e]g
or whatever image extension you're using

if your dataset is not arranged in this way, you can either: (i) use symlinks to put it in this structure (ii) update the above script to read in your data

NEXT, copy the pretraining template

cd utils
cp templates/pretraining-config-template.sh pretrain-configs/my-dataset-config.sh
# edit pretrain-configs/my-dataset-config.sh

# once edited, generate the project
./gen-pretrain-project.sh pretrain-configs/my-dataset-config.sh

What just happened? We generated a bunch of pretraining configs in the following location (take a loot at all of these files to get a feel for how this works):

OpenSelfSup/configs/hpt-pretrain/${shortname}

NEXT, you're ready to kick off a trial run to make sure the pretraining is working as expected =)

# the `-t` flag means `trial`: it'll only run 1 20 epoch pretraining
 ./utils/pretrain-runner.sh -t -d OpenSelfSup/configs/hpt-pretrain/${shortname}

NEXT, if this works, kick off the full training. NOTE: you can kick this off multiple times as long as the config directories share the same filesystem

# simply removing the `-t` flag from above
 ./utils/pretrain-runner.sh -d OpenSelfSup/configs/hpt-pretrain/${shortname}

NEXT, if you want to perform BYOL pretraining, add -b flag.

# simply add the `-b` flag to above. Currently, we only do it on Chexpert, Resisc, and Bdd for Exp3
 ./utils/pretrain-runner.sh -d OpenSelfSup/configs/hpt-pretrain/${shortname} -b

Congratulations: you've launch a full hierarchical pretraining experiment.

FAQs/PROBLEMS?

  • How does pretrain-runner.sh keep track of what's been pretrained?
    • In each config directory, it creates a .pretrain-status folder to keep track of what's processing/finished. See them with e.g. find OpenSelfSup/configs/hpt-pretrain -name '.pretrain-status'
  • How to redo a pretraining, e.g. because it crashed or something changed? Remove the
    • Remove the associate .proc or .done file. Find these e.g.
    find OpenSelfSup/configs/hpt-pretrain -name '.proc'
    find OpenSelfSup/configs/hpt-pretrain -name '.done'

Evaluating Pretrained Representations

This has been simplified to simply:

./utils/pretrain-evaluator.sh -b OpenSelfSup/work_dirs/hpt-pretrain/${shortname}/ -d OpenSelfSup/configs/hpt-pretrain/${shortname}

where -b is the backbone directory and -d is the config directory. This command also works for cross-dataset evaluation (e.g. evaluate models trained on Resic45 and evaluate on UC Merced dataset).

FAQ

Where are the checkpoints and logs? E.g., if you pass in configs/hpt-pretrain/resisc as the config directory, then the working directories for this evalution is e.g. work_dirs/hpt-pretrain/resisc/linear-eval/....

Finetuning

Assuming you generated the pretraining project as specified above, finetuning is as simple as:

./utils/finetune-runner.sh -d ./OpenSelfSup/configs/hpt-pretrain/${shortname}/finetune/ -b ./OpenSelfSup/work_dirs/hpt-pretrain/${shortname}/

where -b is the backbone directory and -d is the config directory Note: to finetune using other backbones, simply pass in a different backbone directory (the script searches for final_backbone.pth files in the provided directory tree)

Finetuning only on pretrained checkpoints with BEST linear analysis

First, specify the pretraining epochs which gives the best linear evaluation result in ./utils/top-linear-analysis-ckpts.txt. Here is an example:

# dataset best-moco-bt best-sup-bt best-no-bt
chest_xray_kids 5000 10000 100000
resisc 5000 50000 100000
chexpert 50000 50000 400000

, in which for chest_xray_kids dataset, 5000-iters, 10000-iters, 100000-iters are the best pretrained models under moco base-training, imagenet-supervised base-training, and no base-training, respectively.

Second, run the following command to perform finetuning only on the best checkpoints (same as above, except that the change of script name):

./utils/finetune-runner-top-only.sh -d ./OpenSelfSup/configs/hpt-pretrain/${shortname}/finetune/ -b ./OpenSelfSup/work_dirs/hpt-pretrain/${shortname}

Pretraining on top of pretraining

Using the output of previously pretrained models, it is very easy to correctly setup pretraining on top of the pretraining. Simply create a new config

utils/pretrain-configs/dataname1-dataname2.sh

(see resisc-ucmerced.sh for an example)

and then set the basetrained models to be the final_backbone.pth from the output of the last pretrained. e.g. for using resisc-45 outputs:

export basetrain_weights=(
    "work_dirs/hpt-pretrain/resisc/moco_v2_800ep_basetrain/50000-iters/final_backbone.pth"

    "work_dirs/hpt-pretrain/resisc/imagenet_r50_supervised_basetrain/50000-iters/final_backbone.pth"

    "work_dirs/hpt-pretrain/resisc/no_basetrain/200000-iters/final_backbone.pth"
)

(see resisc-ucmerced.sh for an example)

To select which backbones to use, evaluate the linear performance from the various source outputs (e.g. all the resisc pretrained outputs) on the target data (e.g. on uc-merced data).

Then simply generate the project and execute the pretraining as normal:

./gen-pretrain-project.sh pretrain-configs/dataname1-dataname2.sh

./pretrain-runner.sh -d OpenSelfSup/configs/hpt-pretrain/$dataname1-dataname2

Object Detection / Semantic Segmentation

Object detection/segmentation uses detectron2 and takes place in the directory

OpenSelfSup/benchmarks/detection

First: Check if the dataset configs you need are already present in configs. E.g. if you're working with CoCo, you'll see the following 2 configs:

configs/coco_R_50_C4_2x.yaml
configs/coco_R_50_C4_2x_moco.yaml

We'll use the config with the _moco suffix for all obj det and segmentation. If your configs already exist, skip the next step.

Next: assuming your configs do not exist, set up the configs you need for your dataset by copying an existing set of configs

cp configs/coco_R_50_C4_2x.yaml ${MYDATA}_R50_C4_2x.yaml
cp configs/coco_R_50_C4_2x_moco.yaml ${MYDATA}_R50_C4_2x_moco.yaml

Edit ${MYDATA}_R50_C4_2x.yaml and set MIN_SIZE_TRAIN and MIN_SIZE_TEST to be appropriate for your dataset. Also, rename TRAIN and TEST to have your dataset name, set MASK_ON to True if doing semantic segmentation, and update STEPS and MAX_ITER if running the training for a different amount of time is appropriate (check relevant publications / codebases to set the training schedule).

Edit ${MYDATA}_R50_C4_2x_moco.yaml and set PIXEL_MEAN and PIXEL_STD (use compute-dataset-pixel-mean-std.py script above, if you don't know them).

Then, edit train_net.py and add the appropriate data registry lines for your train/val data

register_coco_instances("dataname_train", {}, "obj-labels-in-coco-format_train.json", "datasets/dataname/dataname_train")
register_coco_instances("dataname_val", {}, "obj-labels-in-coco-format_val.json", "datasets/dataname/dataname_val")

Then, setup symlinks to your data under datasets/dataname/dataname_train and datasets/dataname/dataname_val, where you replace dataname with your dataname used in the config/registry.

Next, convert your backbone(s) to detectron format, e.g. (NOTE: I recommend keeping backbones in the same directory that they are originally present in, and appending a -detectron2 suffix)

python convert-pretrain-to-detectron2.py ../../data/basetrain_chkpts/imagenet_r50_supervised.pth ../../data/basetrain_chkpts/imagenet_r50_supervised-detectron2.pth

Next kick off training

python train_net.py --config-file configs/DATANAME_R_50_C4_24k_moco.yaml --num-gpus 4 OUTPUT_DIR results/${UNIQUE_DATANAME_EXACTLY_DESCRIBING_THIS_RUN}/ TEST.EVAL_PERIOD 2000 MODEL.WEIGHTS ../../data/basetrain_chkpts/imagenet_r50_supervised-detectron2.pth SOLVER.CHECKPOINT_PERIOD ${INT_HOW_OFTEN_TO_CHECKPOINT}

results will be in results/${UNIQUE_DATANAME_EXACTLY_DESCRIBING_THIS_RUN}, and you can use tensorboard to view them.

Commit and Share Results

Run the following command to grab all results (linear analysis, finetunes, etc) and put them into the appropriate json results file in results/:

./utils/update-all-results.sh

You can verify the results in results and then add the new/updated results file to git and commit.

Did you get an error message such as:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Please investigate as your results may not be complete.
(see errors in file: base-training/utils/tmp/errors.txt)

will not include partial result for base-training/utils/../OpenSelfSup/work_dirs/hpt-pretrain/resisc/finetune/1000-labels/imagenet_r50_supervised_basetrain/50000-iters-2500-iter-0_01-lr-finetune/20200911_170916.log.json
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

This means that this particular evaluation run did not appear to run for enough iterations. Investigate the provided log file, rerun any necessary evaluations, and remove the offending log file.

Debugging this script this script finds the top val accuracy, and save the corresponding test accuracy using the following script:

./utils/agg-results.sh

which outputs results to utils/tmp/results.txt and errors to utils/tmp/errors.txt. Look at this file if your results aren't being generated correctly.

Generate plots

cd utils
python plot-results.py

See plots in directory plot-results (you can also pass in a --data flag to only generate plots for a specific dataset, e.g. python plot-results.py --data resisc)

To plot the eval & test acc curves, use ./utils/plot.py

cd utils
python plot.py --fname PLOT_NAME --folder FOLDER_CONTAINING_DIFFERENT_.PTH_FOLDERs

To Generate plot for full finetuning, do

bash utils/plot-results-exp-2.sh

See plot in directory plot-results/exp-2.

To Generate plot for HPT Pretraining, do

bash utils/plot-results-exp-3.sh

See plot in directory plot-results/exp-3.

Getting activations for similarity measures

Run get_acts.py with a model used for a classifaction task (one that has a test/val set).
Alternatively, run dist_get_acts as follows:

bash dist_get_acts.sh ${CFG} ${CHECKPOINT} [--grab_conv...]

Default behavior is to grab the entire batch of linear layers. Setting --grab_conv will capture a single batch of all convolutional layers.
Layers will be saved in ${WORK_DIR}/model_acts.npz. The npz contains a dictionary which maps layer names to the activations. TODO: add similarity documentation. Similarity measures will be a seperate PR.

Important Notes:

  • If not using the provided experiment management scripts: add a new config file for each base training, even small variations, since the evaluation stage assumes a unique filename for each config (otherwise the checkpoints will overwrite the .previous versions).
  • If not using 4 GPUs, update the learning rate to new_lr = old_lr * new_ngpus / 4

Adding new repositories

  1. Add new repositories as a subtree to the base repository (next to this readme), e.g. this is what I used for OpenSelfSup (subtree cheatsheet):
git remote add openselfsup [email protected]:open-mmlab/OpenSelfSup.git
git fetch openselfsup
git subtree add --prefix=OpenSelfSup openselfsup/master --squash
  1. After updating your conda env for the new repo, update the conda-env.yml file as follows:
conda env export --from-history > conda-env.yml

Debugging and Developing Within OpenSelfSup

Here's a command that will allow breakpoints (WARNING: the results with the debug=true flag SHOULD NOT BE USED -- they disable sync batch norms and are not comparable to other results):

# from OpenSelfSup/
# replace with your desired config
python tools/train.py configs/hpt-pretrain/resisc/moco_v2_800ep_basetrain/500-iters.py --work_dir work_dirs/debug --debug

Owner
Colorado Reed
CS PhD student at Berkeley
Colorado Reed
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022