A Prometheus Python client library for asyncio-based applications

Overview
https://github.com/claws/aioprometheus/workflows/Python%20Package%20Workflow/badge.svg?branch=master https://readthedocs.org/projects/aioprometheus/badge/?version=latest

aioprometheus

aioprometheus is a Prometheus Python client library for asyncio-based applications. It provides metrics collection and serving capabilities, supports multiple data formats and pushing metrics to a gateway.

The project documentation can be found on ReadTheDocs.

Install

$ pip install aioprometheus

A Prometheus Push Gateway client and ASGI service are also included, but their dependencies are not installed by default. You can install them alongside aioprometheus by running:

$ pip install aioprometheus[aiohttp]

Prometheus 2.0 removed support for the binary protocol, so in version 20.0.0 the dependency on prometheus-metrics-proto, which provides binary support, is now optional. If you want binary response support, for use with an older Prometheus, you will need to specify the 'binary' optional extra:

$ pip install aioprometheus[binary]

Multiple optional dependencies can be listed at once, such as:

$ pip install aioprometheus[aiohttp,binary]

Example

The example below shows a single Counter metric collector being created and exposed via the optional aiohttp service endpoint.

#!/usr/bin/env python
"""
This example demonstrates how a single Counter metric collector can be created
and exposed via a HTTP endpoint.
"""
import asyncio
import socket
from aioprometheus import Counter, Service


if __name__ == "__main__":

    async def main(svr: Service) -> None:

        events_counter = Counter(
            "events", "Number of events.", const_labels={"host": socket.gethostname()}
        )
        svr.register(events_counter)
        await svr.start(addr="127.0.0.1", port=5000)
        print(f"Serving prometheus metrics on: {svr.metrics_url}")

        # Now start another coroutine to periodically update a metric to
        # simulate the application making some progress.
        async def updater(c: Counter):
            while True:
                c.inc({"kind": "timer_expiry"})
                await asyncio.sleep(1.0)

        await updater(events_counter)

    loop = asyncio.get_event_loop()
    svr = Service()
    try:
        loop.run_until_complete(main(svr))
    except KeyboardInterrupt:
        pass
    finally:
        loop.run_until_complete(svr.stop())
    loop.close()

In this simple example the counter metric is tracking the number of while loop iterations executed by the updater coroutine. In a realistic application a metric might track the number of requests, etc.

Following typical asyncio usage, an event loop is instantiated first then a metrics service is instantiated. The metrics service is responsible for managing metric collectors and responding to metrics requests.

The service accepts various arguments such as the interface and port to bind to. A collector registry is used within the service to hold metrics collectors that will be exposed by the service. The service will create a new collector registry if one is not passed in.

A counter metric is created and registered with the service. The service is started and then a coroutine is started to periodically update the metric to simulate progress.

This example and demonstration requires some optional extra to be installed.

$ pip install aioprometheus[aiohttp,binary]

The example script can then be run using:

(venv) $ cd examples
(venv) $ python simple-example.py
Serving prometheus metrics on: http://127.0.0.1:5000/metrics

In another terminal fetch the metrics using the curl command line tool to verify they can be retrieved by Prometheus server.

By default metrics will be returned in plan text format.

$ curl http://127.0.0.1:5000/metrics
# HELP events Number of events.
# TYPE events counter
events{host="alpha",kind="timer_expiry"} 33

Similarly, you can request metrics in binary format, though the output will be hard to read on the command line.

$ curl http://127.0.0.1:5000/metrics -H "ACCEPT: application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited"

The metrics service also responds to requests sent to its / route. The response is simple HTML. This route can be useful as a Kubernetes /healthz style health indicator as it does not incur any overhead within the service to serialize a full metrics response.

$ curl http://127.0.0.1:5000/
<html><body><a href='/metrics'>metrics</a></body></html>

The aioprometheus package provides a number of convenience decorator functions that can assist with updating metrics.

The examples directory contains many examples showing how to use the aioprometheus package. The app-example.py file will likely be of interest as it provides a more representative application example than the simple example shown above.

Examples in the examples/frameworks directory show how aioprometheus can be used within various web application frameworks without needing to create a separate aioprometheus.Service endpoint to handle metrics. The FastAPI example is shown below.

#!/usr/bin/env python
"""
Sometimes you may not want to expose Prometheus metrics from a dedicated
Prometheus metrics server but instead want to use an existing web framework.

This example uses the registry from the aioprometheus package to add
Prometheus instrumentation to a FastAPI application. In this example a registry
and a counter metric is instantiated and gets updated whenever the "/" route
is accessed. A '/metrics' route is added to the application using the standard
web framework method. The metrics route renders Prometheus metrics into the
appropriate format.

Run:

  $ pip install fastapi uvicorn
  $ uvicorn fastapi_example:app

"""

from aioprometheus import render, Counter, Registry
from fastapi import FastAPI, Header, Response
from typing import List


app = FastAPI()
app.registry = Registry()
app.events_counter = Counter("events", "Number of events.")
app.registry.register(app.events_counter)


@app.get("/")
async def hello():
    app.events_counter.inc({"path": "/"})
    return "hello"


@app.get("/metrics")
async def handle_metrics(response: Response, accept: List[str] = Header(None)):
    content, http_headers = render(app.registry, accept)
    return Response(content=content, media_type=http_headers["Content-Type"])

License

aioprometheus is released under the MIT license.

aioprometheus originates from the (now deprecated) prometheus python package which was released under the MIT license. aioprometheus continues to use the MIT license and contains a copy of the original MIT license from the prometheus-python project as instructed by the original license.

官方文档已经有翻译的人在做了,

FastAPI 框架,高性能,易学,快速编码,随时可供生产 文档:https://fastapi.tiangolo.com 源码:https://github.com/tiangolo/fastapi FastAPI 是一个现代、快速(高性能)的 Web 框架,基于标准 Python 类型提示,使用

ApacheCN 27 Nov 11, 2022
Monitor Python applications using Spring Boot Admin

Pyctuator Monitor Python web apps using Spring Boot Admin. Pyctuator supports Flask, FastAPI, aiohttp and Tornado. Django support is planned as well.

SolarEdge Technologies 145 Dec 28, 2022
📦 Autowiring dependency injection container for python 3

Lagom - Dependency injection container What Lagom is a dependency injection container designed to give you "just enough" help with building your depen

Steve B 146 Dec 29, 2022
Social Distancing Detector using deep learning and capable to run on edge AI devices such as NVIDIA Jetson, Google Coral, and more.

Smart Social Distancing Smart Social Distancing Introduction Getting Started Prerequisites Usage Processor Optional Parameters Configuring AWS credent

Neuralet 129 Dec 12, 2022
This is a FastAPI application that provides a RESTful API for the Podcasts from different podcast's RSS feeds

The Podcaster API This is a FastAPI application that provides a RESTful API for the Podcasts from different podcast's RSS feeds. The API response is i

Sagar Giri 2 Nov 07, 2021
Async and Sync wrapper client around httpx, fastapi, date stuff

lazyapi Async and Sync wrapper client around httpx, fastapi, and datetime stuff. Motivation This library is forked from an internal project that works

2 Apr 19, 2022
Backend, modern REST API for obtaining match and odds data crawled from multiple sites. Using FastAPI, MongoDB as database, Motor as async MongoDB client, Scrapy as crawler and Docker.

Introduction Apiestas is a project composed of a backend powered by the awesome framework FastAPI and a crawler powered by Scrapy. This project has fo

Fran Lozano 54 Dec 13, 2022
Generate FastAPI projects for high performance applications

Generate FastAPI projects for high performance applications. Based on MVC architectural pattern, WSGI + ASGI. Includes tests, pipeline, base utilities, Helm chart, and script for bootstrapping local

Radosław Szamszur 274 Jan 08, 2023
Online Repo Browser

MSYS2 Web Interface A simple web interface for browsing the MSYS2 repos. Rebuild CSS/JS (optional): cd frontend npm install npm run build Run for Dev

MSYS2 64 Dec 30, 2022
更新 2.0 版本,使用 Python WEB 高性能异步框架 FastAPI 制作的抖音无水印解析下载,采用前后端分离思想!

前言 这个是 2.0 版本,使用现在流行的前后端分离思想重构。 体验网址:https://douyin.bigdataboy.cn 更新日志 2020.05.30:使用 FastAPI 前后端分离重构 2020.05.02:已更新,正常使用 2020.04.27:抖音结构更新,已修复视频有水印。(失

64 Nov 25, 2022
Ready-to-use and customizable users management for FastAPI

FastAPI Users Ready-to-use and customizable users management for FastAPI Documentation: https://frankie567.github.io/fastapi-users/ Source Code: https

François Voron 2.4k Jan 01, 2023
Basic FastAPI starter with GraphQL, Docker, and MongoDB configurations.

FastAPI + GraphQL Starter A python starter project using FastAPI and GraphQL. This project leverages docker for containerization and provides the scri

Cloud Bytes Collection 1 Nov 24, 2022
A Prometheus Python client library for asyncio-based applications

aioprometheus aioprometheus is a Prometheus Python client library for asyncio-based applications. It provides metrics collection and serving capabilit

132 Dec 28, 2022
Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions

Deploy an inference API on AWS (EC2) using FastAPI Docker and Github Actions To learn more about this project: medium blog post The goal of this proje

Ahmed BESBES 60 Dec 17, 2022
The base to start an openapi project featuring: SQLModel, Typer, FastAPI, JWT Token Auth, Interactive Shell, Management Commands.

The base to start an openapi project featuring: SQLModel, Typer, FastAPI, JWT Token Auth, Interactive Shell, Management Commands.

Bruno Rocha 251 Jan 09, 2023
API & Webapp to answer questions about COVID-19. Using NLP (Question Answering) and trusted data sources.

This open source project serves two purposes. Collection and evaluation of a Question Answering dataset to improve existing QA/search methods - COVID-

deepset 329 Nov 10, 2022
This project is a realworld backend based on fastapi+mongodb

This project is a realworld backend based on fastapi+mongodb. It can be used as a sample backend or a sample fastapi project with mongodb.

邱承 381 Dec 29, 2022
sample web application built with FastAPI + uvicorn

SPARKY Sample web application built with FastAPI & Python 3.8 shows simple Flask-like structure with a Bootstrap template index.html also has a backgr

mrx 21 Jan 03, 2022
A minimalistic example of preparing a model for (synchronous) inference in production.

A minimalistic example of preparing a model for (synchronous) inference in production.

Anton Lozhkov 6 Nov 29, 2021
FastAPI Boilerplate

FastAPI Boilerplate Features SQlAlchemy session Custom user class Top-level dependency Dependencies for specific permissions Celery SQLAlchemy for asy

Hide 417 Jan 07, 2023