A simple reverse geocoder that resolves a location to a country

Overview

Reverse Geocoder

This repository holds a small web service that performs reverse geocoding to determine whether a user specified location is within the geographic bounds of a country. If it is then the response will contain attributes associated with the matched country such as name, iso label, etc.

I created this simple demonstrator app to learn about FastAPI and PostGIS. It is built using Python and a PostGIS database loaded with country outline polygons obtained from shape files.

API Endpoints

All endpoints are located at /v1/reverse-geocoder/ and are accessible by HTTP.

The OpenAPI specification can be read from /v1/reverse-geocoder/openapi.json.

A SwaggerUI that renders the OpenAPI specification can be found at /v1/reverse-geocoder/docs. The root / will also redirect to the SwaggerUI docs page.

Reverse Geocoder Endpoint

To access the reverse geocoder send a POST to /v1/reverse-geocoder/ with a payload containing the location of interest. See further down for examples using curl.

When the user supplied point is within a country then the response contains attributes of the country that matched. When the user supplied point is not within a country then the response indicates that no country matched.

The response will always contain a copy of the query parameters so that it provides some context for the data. When the location is within a country bounds then the response payload will look like this:

{
  "location":{
    "latitude":-42.239392,
    "longitude":146.558384,
    "altitude":null
  },
  "country":{
    "name":"Australia",
    "iso2":"AU",
    "iso3":"AUS"
  }
}

If the point is not within a country boundary then the response will look like this:

{
  "location":{
    "latitude":-35.031741,
    "longitude":138.119541,
    "altitude":null
  },
  "country":null
}

Demo

To simplify running the reverse geocoding service a Docker compose configuration example is included. However, a few set up steps need to be run first to prepare data that will go into the database - as it is not stored in this repository.

Clone Repo

Start by cloning this repo.

$ git clone https://github.com/claws/reverse-geocoder.git
$ cd reverse-geocoder

Preparation

This demonstration uses world country boundary outlines in shape file format (.shp, .dbf, .shx files) which contain encoded polygons along with other attributes. However, the files are not stored in this repo so they need to be downloaded and then converted into SQL statements.

The following steps show how to download the content from here, decompress it and then convert it into SQL statements that can later be run to insert the contents into the database.

It is important that the name of the generated SQL file is 90-shapes.sql to ensure it gets run after the builtin PostGIS initialization script (which is 10_postgis.sh). This file will be used as a volume mount in the Docker compose configuration.

shp2pgsql is a command line tool that comes with PostGIS. It converts shape files into a SQL format that can be imported into a PostGIS database. The '-G' specifies the use of the geography data type. The '-I' option creates a spatial index after the table is created. This is strongly recommended for improved performance. To run the last command you may need to install PostGIS on your host machine to get the shp2pgsql tool - there may even be a Docker container that has it too.

$ cd database
$ wget http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
$ unzip TM_WORLD_BORDERS-0.3.zip
$ shp2pgsql -G -I TM_WORLD_BORDERS-0.3.shp countries > 90-shapes.sql
$ cd ..

The shape file produces columns containing the following structures:

COLUMN TYPE DESCRIPTION
fips String(2) FIPS 10-4 Country Code
iso2 String(2) ISO 3166-1 Alpha-2 Country Code
iso3 String(3) ISO 3166-1 Alpha-3 Country Code
un Short Integer(3) ISO 3166-1 Numeric-3 Country Code
name String(50) Name of country/area
area Long Integer(7) Land area, FAO Statistics (2002)
pop2005 Double(10,0) Population, World Population Prospects (2005)
region Short Integer(3) Macro geographical (continental region), UN Statistics
subregion Short Integer(3) Geographical sub-region, UN Statistics
lon FLOAT (7,3) Longitude
lat FLOAT (6,3) Latitude
geog Polygon Country/area border as polygon(s)

Start services

Start the database and web server using Docker compose. As part of the startup steps the database runs initialisation script - which will run SQL file created in the setup steps above.

$ docker-compose up --build

The FastAPI framework is built upon OpenAPI and it supports a builtin viewer for the interface specification. These allow developers to perform manual tests.

Once the services start up you should be able to access the SwaggerUI web user interface here which should redirect you to the docs site.

screenshot

Click the POST /v1/reverse-geocoder/ row to expose details about the endpoint. This endpoint is implemented to accept a payload, rather than URL parameters, as it can then rely on the specification and Pydantic to simplify the interface between the API endpoint and the database layer.

Click the Try it out button. This changes the form to allow user input. Leave the default payload structure then click Execute. The Responses section should get populated with the data returned from the web service - which in this case indicates that the point was in Australia.

Try changing the location to some of those in the table below. The last two should return 'null' for the country as they are located in a sea.

Rough Location Position
Tasmania 146.558384 -42.239392
New Zealand 167.930127 -47.033240
Hawaii -157.935416 21.460822
Iceland -21.478138 64.113670
Cypress 34.321495 35.556301
St Vincent Gulf 138.119541 -35.031741
Black Sea 34.402367 43.400157

The Swagger UI also shows the equivalent curl command to use too.

Check using curl

The Reverse Geocoder Service REST API can be used from curl too.

When the location is within a country bounds then the response payload will contain country attributes.

$ curl -X POST "http://localhost:8000/v1/reverse-geocoder/" \
  -H "accept: application/json" \
  -H "Content-Type: application/json" \
  -d "{\"location\":{\"longitude\":146.558384,\"latitude\":-42.239392}}"
{
  "location":{
    "latitude":-42.239392,
    "longitude":146.558384,
    "altitude":null
  },
  "country":{
    "name":"Australia",
    "iso2":"AU",
    "iso3":"AUS"
  }
}

When the user supplied point is not within a country then the response indicates that no country matched.

$ curl -X POST "http://localhost:8000/v1/reverse-geocoder/" \
  -H "accept: application/json" \
  -H "Content-Type: application/json" \
  -d "{\"location\":{\"longitude\":138.119541,\"latitude\":-35.031741}}"
{
  "location":{
    "latitude":-35.031741,
    "longitude":138.119541,
    "altitude":null
  },
  "country":null
}

Developer Notes

Data Server

It can be useful during development to run the Python web server locally. The instructions below show how to do that.

Create a Python virtual environment.

$ cd web-service
$ python3.8 -m venv venv --prompt fast
$ source venv/bin/activate
(fast) $ pip install pip -U
(fast) $ pip install -r requirements.dev.txt
(fast) $ pip install -r requirements.txt

Apply code style

$ black app

Run the data server. Use --reload to enable automatic reloads on code changes.

(fast) $ uvicorn app.main:app --reload --log-level info
INFO:     Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO:     Started reloader process [2617]
INFO:     Started server process [2619]
INFO:     Waiting for application startup.
INFO:     Connected to database postgresql://postgres:********@localhost:54321/postgres
INFO:     Application startup complete.

Database Inspection

It can be useful to attach to the database directly to test out queries. Use docker-compose to connect to the running database by attaching to the container. Once attached the psql tool can be used to execute a query identical to that done by the web service to check if a point lies within a polygon.

The PostGIS ST_Covers function which returns TRUE if A covers B (i.e. no points of B are outside A).

$ docker-compose run database bash
[email protected]:/$
[email protected]:/$ psql --host database -U postgres postgres
Password for user postgres:
postgres=#
postgres=# SELECT name,fips,iso2,iso3 FROM countries WHERE ST_Covers(countries.geog, ST_GeographyFromText('POINT(146.558384 -42.239392)'));
   name    | fips | iso2 | iso3
-----------+------+------+------
 Australia | AS   | AU   | AUS
(1 row)
postgres=#
postgres=# SELECT name,fips,iso2,iso3 FROM countries WHERE ST_Covers(countries.geog, ST_GeographyFromText('POINT(138.119541 -35.031741)'));
 name | fips | iso2 | iso3
------+------+------+------
(0 rows)
postgres=# \q
[email protected]:/$ exit
Tool to suck data from ArcGIS Server and spit it into PostgreSQL

chupaESRI About ChupaESRI is a Python module/command line tool to extract features from ArcGIS Server map services. Name? Think "chupacabra" or "Chupa

John Reiser 34 Dec 04, 2022
Documentation and samples for ArcGIS API for Python

ArcGIS API for Python ArcGIS API for Python is a Python library for working with maps and geospatial data, powered by web GIS. It provides simple and

Esri 1.4k Dec 30, 2022
Manage your XYZ Hub or HERE Data Hub spaces from Python.

XYZ Spaces for Python Manage your XYZ Hub or HERE Data Hub spaces and Interactive Map Layer from Python. FEATURED IN: Online Python Machine Learning C

HERE Technologies 30 Oct 18, 2022
A ready-to-use curated list of Spectral Indices for Remote Sensing applications.

A ready-to-use curated list of Spectral Indices for Remote Sensing applications. GitHub: https://github.com/davemlz/awesome-ee-spectral-indices Docume

David Montero Loaiza 488 Jan 03, 2023
Geocode rows in a SQLite database table

Geocode rows in a SQLite database table

Chris Amico 225 Dec 08, 2022
Track International space station with python

NASA-ISS-tracker Track International space station with python Modules import json import turtle import urllib.request import time import webbrowser i

Nikhil Yadav 8 Aug 12, 2021
LEOGPS - Satellite Navigation with GPS on Python!

LEOGPS is an open-source Python software which performs relative satellite navigation between two formation flying satellites, with the objective of high accuracy relative positioning. Specifically,

Samuel Low 50 Dec 13, 2022
A utility to search, download and process Landsat 8 satellite imagery

Landsat-util Landsat-util is a command line utility that makes it easy to search, download, and process Landsat imagery. Docs For full documentation v

Development Seed 681 Dec 07, 2022
List of Land Cover datasets in the GEE Catalog

List of Land Cover datasets in the GEE Catalog A list of all the Land Cover (or discrete) datasets in Google Earth Engine. Values, Colors and Descript

David Montero Loaiza 5 Aug 24, 2022
Python module to access the OpenCage geocoding API

OpenCage Geocoding Module for Python A Python module to access the OpenCage Geocoder. Build Status / Code Quality / etc Usage Supports Python 3.6 or n

OpenCage GmbH 57 Nov 01, 2022
A modern, geometric typeface by @chrismsimpson (last commit @ 85fa625 Jun 9, 2020 before deletion)

Metropolis A modern, geometric typeface. Influenced by other popular geometric, minimalist sans-serif typefaces of the new millenium. Designed for opt

Darius 183 Dec 25, 2022
LicenseLocation - License Location With Python

LicenseLocation Hi,everyone! ❀ 🧑 πŸ’› πŸ’š πŸ’™ πŸ’œ This is my first project! βœ” Actual

The Bin 1 Jan 25, 2022
WhiteboxTools Python Frontend

whitebox-python Important Note This repository is related to the WhiteboxTools Python Frontend only. You can report issues to this repo if you have pr

Qiusheng Wu 304 Dec 15, 2022
gjf: A tool for fixing invalid GeoJSON objects

gjf: A tool for fixing invalid GeoJSON objects The goal of this tool is to make it as easy as possible to fix invalid GeoJSON objects through Python o

Yazeed Almuqwishi 91 Dec 06, 2022
Read and write rasters in parallel using Rasterio and Dask

dask-rasterio dask-rasterio provides some methods for reading and writing rasters in parallel using Rasterio and Dask arrays. Usage Read a multiband r

Dymaxion Labs 85 Aug 30, 2022
Interactive Maps with Geopandas

Create Interactive maps πŸ—ΊοΈ with your geodataframe Geopatra extends geopandas for interactive mapping and attempts to wrap the goodness of amazing map

sangarshanan 46 Aug 16, 2022
Cloud Optimized GeoTIFF creation and validation plugin for rasterio

rio-cogeo Cloud Optimized GeoTIFF (COG) creation and validation plugin for Rasterio. Documentation: https://cogeotiff.github.io/rio-cogeo/ Source Code

216 Dec 31, 2022
Extract GoPro highlights and GPMF data.

Python script that parses the gpmd stream for GOPRO moov track (MP4) and extract the GPS info into a GPX (and kml) file.

Chris Auron 2 May 13, 2022
Client library for interfacing with USGS datasets

USGS API USGS is a python module for interfacing with the US Geological Survey's API. It provides submodules to interact with various endpoints, and c

Amit Kapadia 104 Dec 30, 2022
A GUI widget for Linux to show current time in different timezones.

A GUI widget to show current time in different timezones (under development). To use this widget: Run scripts/startup.py Select a country. A list of t

B.Jothin kumar 11 Nov 10, 2022