A simple reverse geocoder that resolves a location to a country

Overview

Reverse Geocoder

This repository holds a small web service that performs reverse geocoding to determine whether a user specified location is within the geographic bounds of a country. If it is then the response will contain attributes associated with the matched country such as name, iso label, etc.

I created this simple demonstrator app to learn about FastAPI and PostGIS. It is built using Python and a PostGIS database loaded with country outline polygons obtained from shape files.

API Endpoints

All endpoints are located at /v1/reverse-geocoder/ and are accessible by HTTP.

The OpenAPI specification can be read from /v1/reverse-geocoder/openapi.json.

A SwaggerUI that renders the OpenAPI specification can be found at /v1/reverse-geocoder/docs. The root / will also redirect to the SwaggerUI docs page.

Reverse Geocoder Endpoint

To access the reverse geocoder send a POST to /v1/reverse-geocoder/ with a payload containing the location of interest. See further down for examples using curl.

When the user supplied point is within a country then the response contains attributes of the country that matched. When the user supplied point is not within a country then the response indicates that no country matched.

The response will always contain a copy of the query parameters so that it provides some context for the data. When the location is within a country bounds then the response payload will look like this:

{
  "location":{
    "latitude":-42.239392,
    "longitude":146.558384,
    "altitude":null
  },
  "country":{
    "name":"Australia",
    "iso2":"AU",
    "iso3":"AUS"
  }
}

If the point is not within a country boundary then the response will look like this:

{
  "location":{
    "latitude":-35.031741,
    "longitude":138.119541,
    "altitude":null
  },
  "country":null
}

Demo

To simplify running the reverse geocoding service a Docker compose configuration example is included. However, a few set up steps need to be run first to prepare data that will go into the database - as it is not stored in this repository.

Clone Repo

Start by cloning this repo.

$ git clone https://github.com/claws/reverse-geocoder.git
$ cd reverse-geocoder

Preparation

This demonstration uses world country boundary outlines in shape file format (.shp, .dbf, .shx files) which contain encoded polygons along with other attributes. However, the files are not stored in this repo so they need to be downloaded and then converted into SQL statements.

The following steps show how to download the content from here, decompress it and then convert it into SQL statements that can later be run to insert the contents into the database.

It is important that the name of the generated SQL file is 90-shapes.sql to ensure it gets run after the builtin PostGIS initialization script (which is 10_postgis.sh). This file will be used as a volume mount in the Docker compose configuration.

shp2pgsql is a command line tool that comes with PostGIS. It converts shape files into a SQL format that can be imported into a PostGIS database. The '-G' specifies the use of the geography data type. The '-I' option creates a spatial index after the table is created. This is strongly recommended for improved performance. To run the last command you may need to install PostGIS on your host machine to get the shp2pgsql tool - there may even be a Docker container that has it too.

$ cd database
$ wget http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
$ unzip TM_WORLD_BORDERS-0.3.zip
$ shp2pgsql -G -I TM_WORLD_BORDERS-0.3.shp countries > 90-shapes.sql
$ cd ..

The shape file produces columns containing the following structures:

COLUMN TYPE DESCRIPTION
fips String(2) FIPS 10-4 Country Code
iso2 String(2) ISO 3166-1 Alpha-2 Country Code
iso3 String(3) ISO 3166-1 Alpha-3 Country Code
un Short Integer(3) ISO 3166-1 Numeric-3 Country Code
name String(50) Name of country/area
area Long Integer(7) Land area, FAO Statistics (2002)
pop2005 Double(10,0) Population, World Population Prospects (2005)
region Short Integer(3) Macro geographical (continental region), UN Statistics
subregion Short Integer(3) Geographical sub-region, UN Statistics
lon FLOAT (7,3) Longitude
lat FLOAT (6,3) Latitude
geog Polygon Country/area border as polygon(s)

Start services

Start the database and web server using Docker compose. As part of the startup steps the database runs initialisation script - which will run SQL file created in the setup steps above.

$ docker-compose up --build

The FastAPI framework is built upon OpenAPI and it supports a builtin viewer for the interface specification. These allow developers to perform manual tests.

Once the services start up you should be able to access the SwaggerUI web user interface here which should redirect you to the docs site.

screenshot

Click the POST /v1/reverse-geocoder/ row to expose details about the endpoint. This endpoint is implemented to accept a payload, rather than URL parameters, as it can then rely on the specification and Pydantic to simplify the interface between the API endpoint and the database layer.

Click the Try it out button. This changes the form to allow user input. Leave the default payload structure then click Execute. The Responses section should get populated with the data returned from the web service - which in this case indicates that the point was in Australia.

Try changing the location to some of those in the table below. The last two should return 'null' for the country as they are located in a sea.

Rough Location Position
Tasmania 146.558384 -42.239392
New Zealand 167.930127 -47.033240
Hawaii -157.935416 21.460822
Iceland -21.478138 64.113670
Cypress 34.321495 35.556301
St Vincent Gulf 138.119541 -35.031741
Black Sea 34.402367 43.400157

The Swagger UI also shows the equivalent curl command to use too.

Check using curl

The Reverse Geocoder Service REST API can be used from curl too.

When the location is within a country bounds then the response payload will contain country attributes.

$ curl -X POST "http://localhost:8000/v1/reverse-geocoder/" \
  -H "accept: application/json" \
  -H "Content-Type: application/json" \
  -d "{\"location\":{\"longitude\":146.558384,\"latitude\":-42.239392}}"
{
  "location":{
    "latitude":-42.239392,
    "longitude":146.558384,
    "altitude":null
  },
  "country":{
    "name":"Australia",
    "iso2":"AU",
    "iso3":"AUS"
  }
}

When the user supplied point is not within a country then the response indicates that no country matched.

$ curl -X POST "http://localhost:8000/v1/reverse-geocoder/" \
  -H "accept: application/json" \
  -H "Content-Type: application/json" \
  -d "{\"location\":{\"longitude\":138.119541,\"latitude\":-35.031741}}"
{
  "location":{
    "latitude":-35.031741,
    "longitude":138.119541,
    "altitude":null
  },
  "country":null
}

Developer Notes

Data Server

It can be useful during development to run the Python web server locally. The instructions below show how to do that.

Create a Python virtual environment.

$ cd web-service
$ python3.8 -m venv venv --prompt fast
$ source venv/bin/activate
(fast) $ pip install pip -U
(fast) $ pip install -r requirements.dev.txt
(fast) $ pip install -r requirements.txt

Apply code style

$ black app

Run the data server. Use --reload to enable automatic reloads on code changes.

(fast) $ uvicorn app.main:app --reload --log-level info
INFO:     Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO:     Started reloader process [2617]
INFO:     Started server process [2619]
INFO:     Waiting for application startup.
INFO:     Connected to database postgresql://postgres:********@localhost:54321/postgres
INFO:     Application startup complete.

Database Inspection

It can be useful to attach to the database directly to test out queries. Use docker-compose to connect to the running database by attaching to the container. Once attached the psql tool can be used to execute a query identical to that done by the web service to check if a point lies within a polygon.

The PostGIS ST_Covers function which returns TRUE if A covers B (i.e. no points of B are outside A).

$ docker-compose run database bash
[email protected]:/$
[email protected]:/$ psql --host database -U postgres postgres
Password for user postgres:
postgres=#
postgres=# SELECT name,fips,iso2,iso3 FROM countries WHERE ST_Covers(countries.geog, ST_GeographyFromText('POINT(146.558384 -42.239392)'));
   name    | fips | iso2 | iso3
-----------+------+------+------
 Australia | AS   | AU   | AUS
(1 row)
postgres=#
postgres=# SELECT name,fips,iso2,iso3 FROM countries WHERE ST_Covers(countries.geog, ST_GeographyFromText('POINT(138.119541 -35.031741)'));
 name | fips | iso2 | iso3
------+------+------+------
(0 rows)
postgres=# \q
[email protected]:/$ exit
Computer Vision in Python

Mahotas Python Computer Vision Library Mahotas is a library of fast computer vision algorithms (all implemented in C++ for speed) operating over numpy

Luis Pedro Coelho 792 Dec 20, 2022
Construct and use map tile grids in different projection.

Morecantile +-------------+-------------+ ymax | | | | x: 0 | x: 1 | | y: 0 | y: 0

Development Seed 67 Dec 23, 2022
Wraps GEOS geometry functions in numpy ufuncs.

PyGEOS PyGEOS is a C/Python library with vectorized geometry functions. The geometry operations are done in the open-source geometry library GEOS. PyG

362 Dec 23, 2022
ESMAC diags - Earth System Model Aerosol-Cloud Diagnostics Package

Earth System Model Aerosol-Cloud Diagnostics Package This Earth System Model (ES

Pacific Northwest National Laboratory 1 Jan 04, 2022
Focal Statistics

Focal-Statistics The Focal statistics tool in many GIS applications like ArcGIS, QGIS and GRASS GIS is a standard method to gain a local overview of r

Ifeanyi Nwasolu 1 Oct 21, 2021
Geospatial web application developed uisng earthengine, geemap, and streamlit.

geospatial-streamlit Geospatial web applications developed uisng earthengine, geemap, and streamlit. App 1 - Land Surface Temperature A simple, code-f

13 Nov 27, 2022
Digital Earth Australia notebooks and tools repository

Repository for Digital Earth Australia Jupyter Notebooks: tools and workflows for geospatial analysis with Open Data Cube and xarray

Geoscience Australia 335 Dec 24, 2022
Hapi is a Python library for building Conceptual Distributed Model using HBV96 lumped model & Muskingum routing method

Current build status All platforms: Current release info Name Downloads Version Platforms Hapi - Hydrological library for Python Hapi is an open-sourc

Mostafa Farrag 15 Dec 26, 2022
Django model field that can hold a geoposition, and corresponding widget

django-geoposition A model field that can hold a geoposition (latitude/longitude), and corresponding admin/form widget. Prerequisites Starting with ve

Philipp Bosch 324 Oct 17, 2022
Helping data scientists better understand their datasets and models in text classification. With love from ServiceNow.

Azimuth, an open-source dataset and error analysis tool for text classification, with love from ServiceNow. Overview Azimuth is an open source applica

ServiceNow 145 Dec 23, 2022
Obtain a GNSS position fix from an 11-millisecond raw GNSS signal snapshot

Obtain a GNSS position fix from an 11-millisecond raw GNSS signal snapshot without any prior knowledge about the position of the receiver and only coarse knowledge about the time.

Jonas Beuchert 2 Nov 17, 2022
Tool to suck data from ArcGIS Server and spit it into PostgreSQL

chupaESRI About ChupaESRI is a Python module/command line tool to extract features from ArcGIS Server map services. Name? Think "chupacabra" or "Chupa

John Reiser 34 Dec 04, 2022
Tile Map Service and OGC Tiles API for QGIS Server

Tiles API Add tiles API to QGIS Server Tiles Map Service API OGC Tiles API Tile Map Service API - TMS The TMS API provides these URLs: /tms/? to get i

3Liz 6 Dec 01, 2021
Read images to numpy arrays

mahotas-imread: Read Image Files IO with images and numpy arrays. Mahotas-imread is a simple module with a small number of functions: imread Reads an

Luis Pedro Coelho 67 Jan 07, 2023
A package to fetch sentinel 2 Satellite data from Google.

Sentinel 2 Data Fetcher Installation Create a Virtual Environment and activate it. python3 -m venv venv . venv/bin/activate Install the Package via pi

1 Nov 18, 2021
A service to auto provision devices in Aruba Central based on the Geo-IP location

Location Based Provisioning Service for Aruba Central A service to auto provision devices in Aruba Central based on the Geo-IP location Geo-IP auto pr

Will Smith 3 Mar 22, 2022
Get-countries-info - A python code that fetches data of any country

Country-info A python code getting countries information including country's map

CODE 2 Feb 21, 2022
A part of HyRiver software stack for handling geospatial data manipulations

Package Description Status PyNHD Navigate and subset NHDPlus (MR and HR) using web services Py3DEP Access topographic data through National Map's 3DEP

Taher Chegini 5 Dec 14, 2022
Tool to display your current position and angle above your radar

🛠 Tool to display your current position and angle above your radar. As a response to the CS:GO Update on 1.2.2022, which makes cl_showpos a cheat-pro

Miko 6 Jan 04, 2023
Platform for building statistical models of cities and regions

UrbanSim UrbanSim is a platform for building statistical models of cities and regions. These models help forecast long-range patterns in real estate d

Urban Data Science Toolkit 419 Dec 30, 2022