Constructing Neural Network-Based Models for Simulating Dynamical Systems

Overview

Constructing Neural Network-Based Models for Simulating Dynamical Systems

Note this repo is work in progress prior to reviewing

This is a companion repo for the review paper Constructing Neural Network-Based Models for Simulating Dynamical Systems. The goal is to provide PyTorch implementations that can be used as a starting point for implementation for other applications.

If you use the work please cite it using:

{
    TODO add bibtex key
}

Installing dependencies

python3 -m pip install -r requirements.txt

Where are the models located?

The table below contains the commands necessary to train and evaluate the models described in the review paper. Each experiment can be run using default parameters by executing the script in the python interpreter as follows:

python3 experiments/
   
    .py ...

   
Name Section Command
Vanilla Direct-Solution 3.2 python3 experiments/direct_solution.py --model vanilla
Automatic Differentiation in Direct-Solution 3.3 python3 experiments/direct_solution.py --model autodiff
Physics Informed Neural Networks 3.4 python3 experiments/direct_solution.py --model pinn
Hidden Physics Networks 3.5 python3 experiments/direct_solution.py --model hnn
Direct Time-Stepper 4.2.1 python3 experiments/time_stepper.py --solver direct
Residual Time-Stepper 4.2.2 python3 experiments/time_stepper.py --solver resnet
Euler Time-Stepper 4.2.3 python3 experiments/time_stepper.py --solver euler
Neural ODEs Time-Stepper 4.2.4 python3 experiments/time_stepper.py --solver {rk4,dopri5,tsit5}
Neural State-Space Model 4.3.1 ...
Neural ODEs with input 4.3.2-3 ...
Lagrangian Time-Stepper 4.4.1 ...
Hamiltonian Time-Stepper 4.4.1 ...
Deep Potential Time-Stepper 4.4.2 ...
Deep Markov-Model 4.5.1 ...
Latent Neural ODEs 4.5.2 python3 experiments/latent_neural_odes.py
Bayesian Neural ODEs 4.5.3 ...
Neural SDEs 4.5.4 ...

Docker Image

In an effort to ensure that the code can be executed in the future, we provide a docker image. The Docker image allows the code to be run in a Linux based virtual machine on any platform supported by Docker.

To use the docker image, invoke the build command in the root of this repository:

docker build . -t python_dynamical_systems

Following this "containers" containing the code and all dependencies can be instantiated via the "run" command:

docker run -ti python_dynamical_systems bash

The command will establish an interactive connection to the container. Following this you can execute the code as if it was running on your host machine:

python3 experiments/time_stepper.py ...
Owner
Christian Møldrup Legaard
Christian Møldrup Legaard
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021