Data Augmentation with Variational Autoencoders

Overview



Documentation 	Status Downloads 	Status

Documentation

Pyraug

This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging contexts such as high dimensional and low sample size data.

Installation

To install the library from pypi.org run the following using pip

$ pip install pyraug

or alternatively you can clone the github repo to access to tests, tutorials and scripts.

$ git clone https://github.com/clementchadebec/pyraug.git

and install the library

$ cd pyraug
$ pip install .

Augmenting your Data

In Pyraug, a typical augmentation process is divided into 2 distinct parts:

  1. Train a model using the Pyraug's TrainingPipeline or using the provided scripts/training.py script
  2. Generate new data from a trained model using Pyraug's GenerationPipeline or using the provided scripts/generation.py script

There exist two ways to augment your data pretty straightforwardly using Pyraug's built-in functions.

Using Pyraug's Pipelines

Pyraug provides two pipelines that may be used to either train a model on your own data or generate new data with a pretrained model.

note: These pipelines are independent of the choice of the model and sampler. Hence, they can be used even if you want to access to more advanced features such as defining your own autoencoding architecture.

Launching a model training

To launch a model training, you only need to call a TrainingPipeline instance. In its most basic version the TrainingPipeline can be built without any arguments. This will by default train a RHVAE model with default autoencoding architecture and parameters.

>>> from pyraug.pipelines import TrainingPipeline
>>> pipeline = TrainingPipeline()
>>> pipeline(train_data=dataset_to_augment)

where dataset_to_augment is either a numpy.ndarray, torch.Tensor or a path to a folder where each file is a data (handled data formats are .pt, .nii, .nii.gz, .bmp, .jpg, .jpeg, .png).

More generally, you can instantiate your own model and train it with the TrainingPipeline. For instance, if you want to instantiate a basic RHVAE run:

>>> from pyraug.models import RHVAE
>>> from pyraug.models.rhvae import RHVAEConfig
>>> model_config = RHVAEConfig(
...    input_dim=int(intput_dim)
... ) # input_dim is the shape of a flatten input data
...   # needed if you did not provide your own architectures
>>> model = RHVAE(model_config)

In case you instantiate yourself a model as shown above and you did not provide all the network architectures (encoder, decoder & metric if applicable), the ModelConfig instance will expect you to provide the input dimension of your data which equals to n_channels x height x width x .... Pyraug's VAE models' networks indeed default to Multi Layer Perceptron neural networks which automatically adapt to the input data shape.

note: In case you have different size of data, Pyraug will reshape it to the minimum size min_n_channels x min_height x min_width x ...

Then the TrainingPipeline can be launched by running:

>>> from pyraug.pipelines import TrainingPipeline
>>> pipe = TrainingPipeline(model=model)
>>> pipe(train_data=dataset_to_augment)

At the end of training, the model weights models.pt and model config model_config.json file will be saved in a folder outputs/my_model/training_YYYY-MM-DD_hh-mm-ss/final_model.

Important: For high dimensional data we advice you to provide you own network architectures and potentially adapt the training and model parameters see documentation for more details.

Launching data generation

To launch the data generation process from a trained model, run the following.

>>> from pyraug.pipelines import GenerationPipeline
>>> from pyraug.models import RHVAE
>>> model = RHVAE.load_from_folder('path/to/your/trained/model') # reload the model
>>> pipe = GenerationPipeline(model=model) # define pipeline
>>> pipe(samples_number=10) # This will generate 10 data points

The generated data is in .pt files in dummy_output_dir/generation_YYYY-MM-DD_hh-mm-ss. By default, it stores batch data of a maximum of 500 samples.

Retrieve generated data

Generated data can then be loaded pretty easily by running

>>> import torch
>>> data = torch.load('path/to/generated_data.pt')

Using the provided scripts

Pyraug provides two scripts allowing you to augment your data directly with commandlines.

note: To access to the predefined scripts you should first clone the Pyraug's repository. The following scripts are located in scripts folder. For the time being, only RHVAE model training and generation is handled by the provided scripts. Models will be added as they are implemented in pyraug.models

Launching a model training:

To launch a model training, run

$ python scripts/training.py --path_to_train_data "path/to/your/data/folder" 

The data must be located in path/to/your/data/folder where each input data is a file. Handled image types are .pt, .nii, .nii.gz, .bmp, .jpg, .jpeg, .png. Depending on the usage, other types will be progressively added.

At the end of training, the model weights models.pt and model config model_config.json file will be saved in a folder outputs/my_model_from_script/training_YYYY-MM-DD_hh-mm-ss/final_model.

Launching data generation

Then, to launch the data generation process from a trained model, you only need to run

$ python scripts/generation.py --num_samples 10 --path_to_model_folder 'path/to/your/trained/model/folder' 

The generated data is stored in several .pt files in outputs/my_generated_data_from_script/generation_YYYY-MM-DD_hh_mm_ss. By default, it stores batch data of 500 samples.

Important: In the simplest configuration, default configurations are used in the scripts. You can easily override as explained in documentation. See tutorials for a more in depth example.

Retrieve generated data

Generated data can then be loaded pretty easily by running

>>> import torch
>>> data = torch.load('path/to/generated_data.pt')

Getting your hands on the code

To help you to understand the way Pyraug works and how you can augment your data with this library we also provide tutorials that can be found in examples folder:

Dealing with issues

If you are experiencing any issues while running the code or request new features please open an issue on github

Citing

If you use this library please consider citing us:

@article{chadebec_data_2021,
	title = {Data {Augmentation} in {High} {Dimensional} {Low} {Sample} {Size} {Setting} {Using} a {Geometry}-{Based} {Variational} {Autoencoder}},
	copyright = {All rights reserved},
	journal = {arXiv preprint arXiv:2105.00026},
  	arxiv = {2105.00026},
	author = {Chadebec, Clément and Thibeau-Sutre, Elina and Burgos, Ninon and Allassonnière, Stéphanie},
	year = {2021}
}

Credits

Logo: SaulLu

You might also like...
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

 An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

ConvMAE: Masked Convolution Meets Masked Autoencoders
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders
Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders

MultiMAE: Multi-modal Multi-task Masked Autoencoders Roman Bachmann*, David Mizrahi*, Andrei Atanov, Amir Zamir Website | arXiv | BibTeX Official PyTo

This is the official Pytorch implementation of
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Comments
  • It takes a long time to train the model

    It takes a long time to train the model

    I am trying to train a RHVAE model for data augmentation and the model starts training but it takes a long time training and do not see any results. I do not know if is an error from my dataset, computer or from the library. Could you help me?

    opened by mikel-hernandezj 2
  • Geodesics computation

    Geodesics computation

    It would be great to have a function to compute geodesics, given a trained model and two points in the latent space.

    The goal would be to allow the exploration of the latent space via geodesics, as visualised in Figure 2 of (Chadebec et al., 2021):

    Screenshot 2021-09-28 at 10 06 34 enhancement 
    opened by Virgiliok 2
  • riemann_tools

    riemann_tools

    Hi,

    In on of your example notebooks (geodesic_computation_example), you import the function Geodesic_autodiff from the package riemann_tools. I cannot find any mention of this package however. Could you perhaps provide some documentation on how to install/import the riemann_tools? Thank you in advance!

    Edit: removing the import solved the problem

    opened by VivienvV 0
Releases(v0.0.6)
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023