Python package for machine learning for healthcare using a OMOP common data model

Overview

omop-learn

What is omop-learn?

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database. omop-learn supports the easy definition of predictive clinical tasks, featurizations of OMOP data, and cohorts of relevance. We further provide methods using sparse tensor implementations to rapidly manipulate the collected features in the rawest form possible, allowing for dynamic transformations of the data.

Two machine-learning models are included with the library. First, a windowed linear model, which uses various backwards-facing windows to aggregate features over different timescales, then feeds these features into a regularized logistic regression model. This model was inspired by the work of Razavian et. al. '15, and despite its simplicity is often competitive with state-of-the-art algorithms. We also include SARD (Self-Attention with Reverse Distillation), a novel deep-learning algorithm that uses self-attention to allow medical events to contextualize themselves using other events in a patient's timeline. SARD also makes use of reverse distillation, a training technique we introduce that effectively initializes a deep model using a high-performing linear proxy, in this case the windowed linear model described above -- for the details of this method and the SARD architecture, please see our paper Kodialam et al. AAAI '21.

Documentation

For a more detailed summary of omop-learn's data collection pipeline, and for documentation of functions, please see the full documentation for this repo, which also describes the process of creating one's own cohorts, predictive tasks, and features.

Dependencies

The following libraries are necessary to run omop-learn:

  • numpy
  • sqlalchemy
  • pandas
  • torch
  • sklearn
  • matplotlib
  • ipywidgets
  • IPython.display
  • gensim.models
  • scipy.sparse
  • sparse

Note that sparse is the PyData Sparse library, documented here

Running omop-learn

We provide several example notebooks, which all use an example task of predicting mortality over a six-month window for patients over the age of 70.

  • End of Life Linear Model Example.ipynb and End of Life Deep Model Example.ipynb run the windowed linear and deep SARD models respectively -- note that your machine must be able to access a GPU in order to run the deep models.
  • End of Life Linear Model Example (With Nontemporal Features).ipynb demonstrates how to add nontemporal features.
  • End of Life Linear Model Ancestors Example.ipynb demonstrates how to add feature ancestors.
  • End of Life Linear Model Example More Prediction Times.ipynb uses a larger dataset with predictions from any date within a time range.

To run the models, first set up the file config.py with connection information for your Postgres server containing an OMOP CDM database. Then, simply run through the cells of the notebook in order. Further documentation of the exact steps taken to define a task, collect data, and run a predictive model are embedded within the notebooks.

Contributors and Acknowledgements

Omop-learn was written by Rohan Kodialam and Jake Marcus, with additional contributions by Rebecca Boiarsky, Ike Lage, and Shannon Hwang.

This package was developed as part of a collaboration with Independence Blue Cross and would not have been possible without the advice and support of Aaron Smith-McLallen, Ravi Chawla, Kyle Armstrong, Luogang Wei, and Jim Denyer.

Owner
Sontag Lab
Machine learning algorithms and applications to health care.
Sontag Lab
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022