CLOOB training (JAX) and inference (JAX and PyTorch)

Overview

cloob-training

Pretrained models

There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint trained on LAION 400M.

Zero-shot ImageNet validation set accuracy (using OpenCLIP's code):

Model name Top 1 Top 5
cloob_laion_400m_vit_b_16_16_epochs 0.61238 0.8492
cloob_laion_400m_vit_b_16_32_epochs 0.62816 0.85964
OpenAI CLIP ViT-B/32 0.6327 0.88772
OpenAI CLIP ViT-B/16 0.68132 0.91768
OpenAI CLIP ViT-L/14 0.75388 0.9454
OpenAI CLIP ViT-L/14 @ 336 px 0.76564 0.9515
OpenAI CLIP RN50 0.59806 0.86498
OpenAI CLIP RN101 0.62296 0.88106
OpenAI CLIP RN50x4 0.66268 0.9046
OpenAI CLIP RN50x16 0.70754 0.92822
OpenAI CLIP RN50x64 0.74134 0.94146

PyTorch

from cloob_training import model_pt, pretrained

pretrained.list_configs()

returns:

['cloob_laion_400m_vit_b_16_16_epochs', 'cloob_laion_400m_vit_b_16_32_epochs']

The models can be used by:

config = pretrained.get_config('cloob_laion_400m_vit_b_16_16_epochs')
model = model_pt.get_pt_model(config)
checkpoint = pretrained.download_checkpoint(config)
model.load_state_dict(model_pt.get_pt_params(config, checkpoint))
model.eval().requires_grad_(False).to('cuda')

Model class attributes:

model.config: the model config dict.

model.image_encoder: the image encoder, which expects NCHW batches of normalized images (preprocessed by model.normalize), where C = model.config['image_encoder']['input_channels'] and H, W = model.config['image_encoder']['image_size'].

model.text_encoder: the text encoder, which expects text tokenized by model.tokenize.

model.normalize: the preprocessor for image tensors.

model.tokenize: the preprocessor for text.

JAX

Coming soon...

Training (JAX only)

Coming soon...

Owner
Katherine Crowson
AI/generative artist.
Katherine Crowson
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022