BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

Related tags

Text Data & NLPbros
Overview

BROS

Introduction

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which are text and bounding box pairs, it can perform various key information extraction tasks, such as extracting an ordered item list from receipts. For more details, please refer to our paper:

BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents
Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park
AAAI 2022 (to appear)

Pre-trained models

name # params Hugging Face - Models
bros-base-uncased < 110M naver-clova-ocr/bros-base-uncased
bros-large-uncased < 340M naver-clova-ocr/bros-large-uncased

Model usage

The example code below is written with reference to LayoutLM.

import torch
from bros import BrosTokenizer, BrosModel


tokenizer = BrosTokenizer.from_pretrained("naver-clova-ocr/bros-base-uncased")
model = BrosModel.from_pretrained("naver-clova-ocr/bros-base-uncased")


width, height = 1280, 720

words = ["to", "the", "moon!"]
quads = [
    [638, 451, 863, 451, 863, 569, 638, 569],
    [877, 453, 1190, 455, 1190, 568, 876, 567],
    [632, 566, 1107, 566, 1107, 691, 632, 691],
]

bbox = []
for word, quad in zip(words, quads):
    n_word_tokens = len(tokenizer.tokenize(word))
    bbox.extend([quad] * n_word_tokens)

cls_quad = [0.0] * 8
sep_quad = [width, height] * 4
bbox = [cls_quad] + bbox + [sep_quad]

encoding = tokenizer(" ".join(words), return_tensors="pt")
input_ids = encoding["input_ids"]
attention_mask = encoding["attention_mask"]

bbox = torch.tensor([bbox])
bbox[:, :, [0, 2, 4, 6]] = bbox[:, :, [0, 2, 4, 6]] / width
bbox[:, :, [1, 3, 5, 7]] = bbox[:, :, [1, 3, 5, 7]] / height

outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
last_hidden_state = outputs.last_hidden_state

print("- last_hidden_state")
print(last_hidden_state)
print()
print("- last_hidden_state.shape")
print(last_hidden_state.shape)

Result

- last_hidden_state
tensor([[[-0.0342,  0.2487, -0.2819,  ...,  0.1495,  0.0218,  0.0484],
         [ 0.0792, -0.0040, -0.0127,  ..., -0.0918,  0.0810,  0.0419],
         [ 0.0808, -0.0918,  0.0199,  ..., -0.0566,  0.0869, -0.1859],
         [ 0.0862,  0.0901,  0.0473,  ..., -0.1328,  0.0300, -0.1613],
         [-0.2925,  0.2539,  0.1348,  ...,  0.1988, -0.0148, -0.0982],
         [-0.4160,  0.2135, -0.0390,  ...,  0.6908, -0.2985,  0.1847]]],
       grad_fn=
   
    )

- last_hidden_state.shape
torch.Size([1, 6, 768])

   

Fine-tuning examples

Please refer to docs/finetuning_examples.md.

Acknowledgements

We referenced the code of LayoutLM when implementing BROS in the form of Hugging Face - transformers.
In this repository, we used two public benchmark datasets, FUNSD and SROIE.

License

Copyright 2022-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
SimCTG - A Contrastive Framework for Neural Text Generation

A Contrastive Framework for Neural Text Generation Authors: Yixuan Su, Tian Lan,

Yixuan Su 345 Jan 03, 2023
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

What is this fork of Megatron-LM and Megatron-DeepSpeed This is a detached fork of https://github.com/microsoft/Megatron-DeepSpeed, which in itself is

BigScience Workshop 316 Jan 03, 2023
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023