Official pytorch implementation of Rainbow Memory (CVPR 2021)

Overview

Rainbow Memory - Official PyTorch Implementation

Rainbow Memory: Continual Learning with a Memory of Diverse Samples
Jihwan Bang*, Heesu Kim*, YoungJoon Yoo, Jung-Woo Ha, Jonghyun Choi
CVPR 2021
Paper | Bibtex
(* indicates equal contribution)

NOTE: The code will be pushed to this repository soon.

Abstract

Continual learning is a realistic learning scenario for AI models. Prevalent scenario of continual learning, however, assumes disjoint sets of classes as tasks and is less realistic rather artificial. Instead, we focus on 'blurry' task boundary; where tasks shares classes and is more realistic and practical. To address such task, we argue the importance of diversity of samples in an episodic memory. To enhance the sample diversity in the memory, we propose a novel memory management strategy based on per-sample classification uncertainty and data augmentation, named Rainbow Memory (RM). With extensive empirical validations on MNIST, CIFAR10, CIFAR100, and ImageNet datasets, we show that the proposed method significantly improves the accuracy in blurry continual learning setups, outperforming state of the arts by large margins despite its simplicity.

Overview of the results of RM

The table is shown for last accuracy comparison in various datasets in Blurry10-Online. If you want to see more details, see the paper.

Methods MNIST CIFAR100 ImageNet
EWC 90.98±0.61 26.95±0.36 39.54
Rwalk 90.69±0.62 32.31±0.78 35.26
iCaRL 78.09±0.60 17.39±1.04 17.52
GDumb 88.51±0.52 27.19±0.65 21.52
BiC 77.75±1.27 13.01±0.24 37.20
RM w/o DA 92.65±0.33 34.09±1.41 37.96
RM 91.80±0.69 41.35±0.95 50.11

Updates

  • April 2nd, 2021: Initial upload only README
  • April 16th, 2021: Upload all the codes for experiments

Getting Started

Requirements

  • Python3
  • Pytorch (>1.0)
  • torchvision (>0.2)
  • numpy
  • pillow~=6.2.1
  • torch_optimizer
  • randaugment
  • easydict
  • pandas~=1.1.3

Datasets

All the datasets are saved in dataset directory by following formats as shown below.

[dataset name] 
    |_train
        |_[class1 name]
            |_00001.png
            |_00002.png 
            ...
        |_[class2 name]
            ... 
    |_test (val for ImageNet)
        |_[class1 name]
            |_00001.png
            |_00002.png
            ...
        |_[class2 name]
            ...

You can easily download the dataset following above format.

For ImageNet, you should download the public site.

Usage

To run the experiments in the paper, you just run experiment.sh.

bash experiment.sh 

For various experiments, you should know the role of each argument.

  • MODE: CIL methods. Our method is called rm. [joint, gdumb, icarl, rm, ewc, rwalk, bic] (joint calculates accuracy when training all the datasets at once.)
  • MEM_MANAGE: Memory management method. default uses the memory method which the paper originally used. [default, random, reservoir, uncertainty, prototype].
  • RND_SEED: Random Seed Number
  • DATASET: Dataset name [mnist, cifar10, cifar100, imagenet]
  • STREAM: The setting whether current task data can be seen iteratively or not. [online, offline]
  • EXP: Task setup [disjoint, blurry10, blurry30]
  • MEM_SIZE: Memory size cifar10: k={200, 500, 1000}, mnist: k=500, cifar100: k=2,000, imagenet: k=20,000
  • TRANS: Augmentation. Multiple choices [cutmix, cutout, randaug, autoaug]

Results

There are three types of logs during running experiments; logs, results, tensorboard. The log files are saved in logs directory, and the results which contains accuracy of each task are saved in results directory.

root_directory
    |_ logs 
        |_ [dataset]
            |_{mode}_{mem_manage}_{stream}_msz{k}_rnd{seed_num}_{trans}.log
            |_ ...
    |_ results
        |_ [dataset]
            |_{mode}_{mem_manage}_{stream}_msz{k}_rnd{seed_num}_{trans}.npy
            |_...

In addition, you can also use the tensorboard as following command.

tensorboard --logdir tensorboard

Citation

@inproceedings{jihwan2021rainbow,
  title={Rainbow Memory: Continual Learning with a Memory of Diverse Samples},
  author={Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, Jonghyun Choi},
  booktitle={CVPR},
  month={June},
  year={2021}
}

License

Copyright 2021-present NAVER Corp.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see .
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022