Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Overview

Accelerating Reinforcement Learning with Learned Skill Priors

[Project Website] [Paper]

Karl Pertsch1, Youngwoon Lee1, Joseph Lim1

1CLVR Lab, University of Southern California

This is the official PyTorch implementation of the paper "Accelerating Reinforcement Learning with Learned Skill Priors" (CoRL 2020).

Updates

  • [Mar 2021]: added an improved version of SPiRL with closed-loop skill decoder (see example commands)

Requirements

  • python 3.7+
  • mujoco 2.0 (for RL experiments)
  • Ubuntu 18.04

Installation Instructions

Create a virtual environment and install all required packages.

cd spirl
pip3 install virtualenv
virtualenv -p $(which python3) ./venv
source ./venv/bin/activate

# Install dependencies and package
pip3 install -r requirements.txt
pip3 install -e .

Set the environment variables that specify the root experiment and data directories. For example:

mkdir ./experiments
mkdir ./data
export EXP_DIR=./experiments
export DATA_DIR=./data

Finally, install our fork of the D4RL benchmark repository by following its installation instructions. It will provide both, the kitchen environment as well as the training data for the skill prior model in kitchen and maze environment.

Example Commands

To train a skill prior model for the kitchen environment, run:

python3 spirl/train.py --path=spirl/configs/skill_prior_learning/kitchen/hierarchical --val_data_size=160

Results can be visualized using tensorboard in the experiment directory: tensorboard --logdir=$EXP_DIR.

For training a SPIRL agent on the kitchen environment using the pre-trained skill prior from above, run:

python3 spirl/rl/train.py --path=spirl/configs/hrl/kitchen/spirl --seed=0 --prefix=SPIRL_kitchen_seed0

Results will be written to WandB. Before running RL, create an account and then change the WandB entity and project name at the top of rl/train.py to match your account.

In both commands, kitchen can be replaced with maze / block_stacking to run on the respective environment. Before training models on these environments, the corresponding datasets need to be downloaded (the kitchen dataset gets downloaded automatically) -- download links are provided below. Additional commands for training baseline models / agents are also provided below.

Baseline Commands

  • Train Single-step action prior:
python3 spirl/train.py --path=spirl/configs/skill_prior_learning/kitchen/flat --val_data_size=160
  • Run Vanilla SAC:
python3 spirl/rl/train.py --path=spirl/configs/rl/kitchen/SAC --seed=0 --prefix=SAC_kitchen_seed0
  • Run SAC w/ single-step action prior:
python3 spirl/rl/train.py --path=spirl/configs/rl/kitchen/prior_initialized/flat_prior/ --seed=0 --prefix=flatPrior_kitchen_seed0
  • Run BC + finetune:
python3 spirl/rl/train.py --path=spirl/configs/rl/kitchen/prior_initialized/bc_finetune/ --seed=0 --prefix=bcFinetune_kitchen_seed0
  • Run Skill Space Policy w/o prior:
python3 spirl/rl/train.py --path=spirl/configs/hrl/kitchen/no_prior/ --seed=0 --prefix=SSP_noPrior_kitchen_seed0

Again, all commands can be run on maze / block stacking by replacing kitchen with the respective environment in the paths (after downloading the datasets).

Starting to Modify the Code

Modifying the hyperparameters

The default hyperparameters are defined in the respective model files, e.g. in skill_prior_mdl.py for the SPIRL model. Modifications to these parameters can be defined through the experiment config files (passed to the respective command via the --path variable). For an example, see kitchen/hierarchical/conf.py.

Adding a new dataset for model training

All code that is dataset-specific should be placed in a corresponding subfolder in spirl/data. To add a data loader for a new dataset, the Dataset classes from data_loader.py need to be subclassed and the __getitem__ function needs to be overwritten to load a single data sample. The output dict should include the following keys:

dict({
    'states': (time, state_dim)                 # state sequence (for state-based prior inputs)
    'actions': (time, action_dim)               # action sequence (as skill input for training prior model)
    'images':  (time, channels, width, height)  # image sequence (for image-based prior inputs)
})

All datasets used with the codebase so far have been based on HDF5 files. The GlobalSplitDataset provides functionality to read all HDF5-files in a directory and split them in train/val/test based on percentages. The VideoDataset class provides many functionalities for manipulating sequences, like randomly cropping subsequences, padding etc.

Adding a new RL environment

To add a new RL environment, simply define a new environent class in spirl/rl/envs that inherits from the environment interface in spirl/rl/components/environment.py.

Modifying the skill prior model architecture

Start by defining a model class in the spirl/models directory that inherits from the BaseModel or SkillPriorMdl class. The new model needs to define the architecture in the constructor (e.g. by overwriting the build_network() function), implement the forward pass and loss functions, as well as model-specific logging functionality if desired. For an example, see spirl/models/skill_prior_mdl.py.

Note, that most basic architecture components (MLPs, CNNs, LSTMs, Flow models etc) are defined in spirl/modules and can be conveniently reused for easy architecture definitions. Below are some links to the most important classes.

Component File Description
MLP Predictor Basic N-layer fully-connected network. Defines number of inputs, outputs, layers and hidden units.
CNN-Encoder ConvEncoder Convolutional encoder, number of layers determined by input dimensionality (resolution halved per layer). Number of channels doubles per layer. Returns encoded vector + skip activations.
CNN-Decoder ConvDecoder Mirrors architecture of conv. encoder. Can take skip connections as input, also versions that copy pixels etc.
Processing-LSTM BaseProcessingLSTM Basic N-layer LSTM for processing an input sequence. Produces one output per timestep, number of layers / hidden size configurable.
Prediction-LSTM RecurrentPredictor Same as processing LSTM, but for autoregressive prediction.
Mixture-Density Network MDN MLP that outputs GMM distribution.
Normalizing Flow Model NormalizingFlowModel Implements normalizing flow model that stacks multiple flow blocks. Implementation for RealNVP block provided.

Adding a new RL algorithm

The core RL algorithms are implemented within the Agent class. For adding a new algorithm, a new file needs to be created in spirl/rl/agents and BaseAgent needs to be subclassed. In particular, any required networks (actor, critic etc) need to be constructed and the update(...) function needs to be overwritten. For an example, see the SAC implementation in SACAgent.

The main SPIRL skill prior regularized RL algorithm is implemented in ActionPriorSACAgent.

Detailed Code Structure Overview

spirl
  |- components            # reusable infrastructure for model training
  |    |- base_model.py    # basic model class that all models inherit from
  |    |- checkpointer.py  # handles storing + loading of model checkpoints
  |    |- data_loader.py   # basic dataset classes, new datasets need to inherit from here
  |    |- evaluator.py     # defines basic evaluation routines, eg top-of-N evaluation, + eval logging
  |    |- logger.py        # implements core logging functionality using tensorboardX
  |    |- params.py        # definition of command line params for model training
  |    |- trainer_base.py  # basic training utils used in main trainer file
  |
  |- configs               # all experiment configs should be placed here
  |    |- data_collect     # configs for data collection runs
  |    |- default_data_configs   # defines one default data config per dataset, e.g. state/action dim etc
  |    |- hrl              # configs for hierarchical downstream RL
  |    |- rl               # configs for non-hierarchical downstream RL
  |    |- skill_prior_learning   # configs for skill embedding and prior training (both hierarchical and flat)
  |
  |- data                  # any dataset-specific code (like data generation scripts, custom loaders etc)
  |- models                # holds all model classes that implement forward, loss, visualization
  |- modules               # reusable architecture components (like MLPs, CNNs, LSTMs, Flows etc)
  |- rl                    # all code related to RL
  |    |- agents           # implements core algorithms in agent classes, like SAC etc
  |    |- components       # reusable infrastructure for RL experiments
  |        |- agent.py     # basic agent and hierarchial agent classes - do not implement any specific RL algo
  |        |- critic.py    # basic critic implementations (eg MLP-based critic)
  |        |- environment.py    # defines environment interface, basic gym env
  |        |- normalization.py  # observation normalization classes, only optional
  |        |- params.py    # definition of command line params for RL training
  |        |- policy.py    # basic policy interface definition
  |        |- replay_buffer.py  # simple numpy-array replay buffer, uniform sampling and versions
  |        |- sampler.py   # rollout sampler for collecting experience, for flat and hierarchical agents
  |    |- envs             # all custom RL environments should be defined here
  |    |- policies         # policy implementations go here, MLP-policy and RandomAction are implemented
  |    |- utils            # utilities for RL code like MPI, WandB related code
  |    |- train.py         # main RL training script, builds all components + runs training
  |
  |- utils                 # general utilities, pytorch / visualization utilities etc
  |- train.py              # main model training script, builds all components + runs training loop and logging

The general philosophy is that each new experiment gets a new config file that captures all hyperparameters etc. so that experiments themselves are version controllable.

Datasets

Dataset Link Size
Maze https://drive.google.com/file/d/1pXM-EDCwFrfgUjxITBsR48FqW9gMoXYZ/view?usp=sharing 12GB
Block Stacking https://drive.google.com/file/d/1VobNYJQw_Uwax0kbFG7KOXTgv6ja2s1M/view?usp=sharing 11GB

You can download the datasets used for the experiments in the paper with the links above. To download the data via the command line, see example commands here.

If you want to generate more data or make other modifications to the data generating procedure, we provide instructions for regenerating the maze and block stacking datasets here.

Citation

If you find this work useful in your research, please consider citing:

@inproceedings{pertsch2020spirl,
    title={Accelerating Reinforcement Learning with Learned Skill Priors},
    author={Karl Pertsch and Youngwoon Lee and Joseph J. Lim},
    booktitle={Conference on Robot Learning (CoRL)},
    year={2020},
}

Acknowledgements

The model architecture and training code builds on a code base which we jointly developed with Oleh Rybkin for our previous project on hierarchial prediction.

We also published many of the utils / architectural building blocks in a stand-alone package for easy import into your own research projects: check out the blox python module.

Owner
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
Learning and Reasoning for Artificial Intelligence, especially focused on perception and action. Led by Professor Joseph J. Lim @ USC
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022