code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

Related tags

Deep LearningMVSS-Net
Overview

MVSS-Net

Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision

Image text

Update

To Be Done.

  • 21.12.17, Something new: MVSS-Net++

We now have an improved version of MVSS-Net, denoted as MVSS-Net++. Check here.

Environment

  • Ubuntu 16.04.6 LTS
  • Python 3.6
  • cuda10.1+cudnn7.6.3

Requirements

Usage

Dataset

An example of the dataset index file is given as data/CASIAv1plus.txt, where each line contains:

img_path mask_path label
  • 0 represents the authentic and 1 represents the manipulated.
  • For an authentic image, the mask_path is "None".
  • For wild images without mask groundtruth, the index should at least contain "img_path" per line.
Training sets
Test sets
  • DEFACTO-12k
  • Columbia
  • COVER
  • NIST16
  • CASIAv1plus: Note that some of the authentic images in CASIAv1 also appear in CASIAv2. With those images fully replaced by Corel images that are new to both CASIAv1 and CASIAv2, we constructed a revision of CASIAv1 termed as CASIAv1plus. We recommend to use CASIAv1plus as an alternative to the original CASIAv1.

Trained Models

We offer FCNs and MVSS-Nets trained on CASIAv2 and DEFACTO_84k, respectively. Please download the models and place them in the ckpt directory:

The performance of these models for image-level manipulation detection (metric: AUC and image-level F1) is as follows. More details are reported in the paper.

Performance metric: AUC
Model Training data CASIAv1plus Columbia COVER DEFACTO-12k
MVSS_Net CASIAv2 0.932 0.980 0.731 0.573
MVSS_Net DEFACTO-84k 0.771 0.563 0.525 0.886
FCN CASIAv2 0.769 0.762 0.541 0.551
FCN DEFACTO-84k 0.629 0.535 0.543 0.840
Performance metric: Image-level F1 (threshold=0.5)
Model Training data CASIAv1plus Columbia COVER DEFACTO-12k
MVSS_Net CASIAv2 0.759 0.802 0.244 0.404
MVSS_Net DEFACTO-84k 0.685 0.353 0.360 0.799
FCN CASIAv2 0.684 0.481 0.180 0.458
FCN DEFACTO-84k 0.561 0.492 0.511 0.709

Inference & Evaluation

You can specify which pre-trained model to use by setting model_path in do_pred_and_eval.sh. Given a test_collection (e.g. CASIAv1plus or DEFACTO12k-test), the prediction maps and evaluation results will be saved under save_dir. The default threshold is set as 0.5.

bash do_pred_and_eval.sh $test_collection
#e.g. bash do_pred_and_eval.sh CASIAv1plus

For inference only, use following command to skip evaluation:

bash do_pred.sh $test_collection
#e.g. bash do_pred.sh CASIAv1plus

Demo

  • demo.ipynb: A step-by-step notebook tutorial showing the usage of a pre-trained model to detect manipulation in a specific image.

Citation

If you find this work useful in your research, please consider citing:

@InProceedings{MVSS_2021ICCV,  
author = {Chen, Xinru and Dong, Chengbo and Ji, Jiaqi and Cao, juan and Li, Xirong},  
title = {Image Manipulation Detection by Multi-View Multi-Scale Supervision},  
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},  
year = {2021}  
}

Acknowledgments

Contact

If you enounter any issue when running the code, please feel free to reach us either by creating a new issue in the github or by emailing

Owner
dong_chengbo
dong_chengbo
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Namish Khanna 40 Oct 11, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022